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1 EXECUTIVE SUMMARY 

1.1 Introduction 

POWER ELECTRONICS BUILDING BLOCKS, "PLUG AND PLAY" HARDWARE AND CONTROL 

ARCHITECTURES. The main objective of this project has been to investigate means to standardize 

communications and control systems in order to develop seamless "Plug and Play" (PnP) power 

electronics. The intent within has been to pave the way for the development of reconfigurable 

low-cost, high reliability, and easy to use power processing devices. Such devices, known as 

Power Electronics Building Blocks (PEBBs), would certainly encourage the proliferation of 

power electronics into markets not yet penetrated due to a significant, critical lack of industrial 

modularization and standardization in this area. In fact, the flexibility level that could be attained 

is such that it would ensure significant increments of production, as well as manufacturing cost 

reductions due to economies of scale. 

To this end, a PEBB-based distributed power electronics system architecture was proposed, 

bulk, and evaluated. This system is depicted in Fig. 1-1, where it clearly shows the hierarchical 

structure of the developed control system, as well as its main constituents, i.e. the Universal or 

application Controller, and the PEBB modules with their Hardware Managers. Fig. 1-2 on the 

other hand shows the information flow in the proposed system, where control signals, together 

with state variables measurements and various commands are transmitted through and across 

hierarchies using the communications protocol PESNet. This protocol has also been developed in 

this project and implemented by means of a double-ring structure fiber optic network. Implicit in 

this figure is the software and control software architecture which enables the PnP capabilities of 

this system, exuding in modularity, reconfigurability, and reusability. 

The specific structure and partitioning of the proposed power electronics system was 

determined through thorough studies of power conversion systems. Particularly, voltage-source- 

based power converter structures were considered, representing if not all high power structures all 

high power applications. From these, a common element was identified and through appropriate 

correspondence with the control system structure a PEBB module was defined. Particularly, the 

PEBB was defined   as a converter phase-leg, functionally equivalent to a Single-Pole-Double- 

11 
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Fig. 1-1 PEBB-based distributed power electronics system. 
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Fig. 1-2 Information flow throughout the power electronics system. 

12 



a) b) 

^ac+V 

Fig. 1-3 PEBB module defined for this project, a) Circuit schematic and b) functional 

equivalent modeled as a SPOT switch. 

Throw (SPOT) switch as shown in Fig. 1-3. Fig. 1-4 shows how this PEBB is found in most 

voltage-source power converter structures employed for medium to high power applications. 

The final implementation of the proposed power electronics system is depicted in Fig. 1-5, 

where again the main constituents can be easily identified, as well as secondary components 

which nonetheless represent critical system functions. Specifically, the electromechanical 

structure which must accommodate the new distributed power electronics system, which must 

cope with, solve, and minimize space distributions and orientations, unwanted parasitic effects, 

all the while providing the main PnP functionalities, that is ease of reconfiguration, 

maintainabiUty, supportability, and modularity. Fig. 1-5 also shows what have been defined as 

passive PEBBs. These are mainly reactive elements required for proper converter operation and 

harmonic and EMI fiUering, and protection and operating devices such as fuses and contactors. 

This project did not consider fliUy integrating these passive PEBBs, nonetheless they have been 

physically located and distributed accordingly, and have been provided with integrated protective 

devices. 

As previously stated, the main drive of this project has been to investigate means to 

standardize control and communication systems in order to develop PnP power conversion 

systems. Consequently, the main work was focused in the development of 1) the Universal 

13 
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FRONT BACK 

Fig. 1-6 Universal Controller board developed and manufactured for this project. 

Controller, 2) the communications and control software architectures, and 3) the Hardware 

Manager. 

- It can be said that the Universal Controller effectively achieved all its design goals, offering 

powerfiil computational resources as well as a several communication interfaces for ease of 

development, operation, and interaction. BuiU over a DSP/FPGA digital system architecture, the 

Universal Controller now includes interfaces such as: JTAG for the DSP and FPGA, 88 I/O pins 

connected to the FPGA, and a PCI interface. Fig. 1-6 shows a picture of the Universal Controller. 

- The PESNet protocol based on industrial control system protocols was further upgraded to 

include enhanced communication capabilities to support the PnP capabilities of the proposed 

power conversion system implemented over a dual ring fiber optic network. On the other hand a 

control software system was built over standardized Elementary Control Objects (ECO) featuring 

a high degree of reusability and great ease of reconfiguration for different fimctions and 

applications. All this was developed over an especially designed and developed kernel DARK, 

which provided a high performance platform for running dataflow applications. Fig. 1-7 shows a 

closed-loop control implementation using the proposed control software architecture. 
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Fig. 1-8 Hardware Manager board mounted on one of the 33 kW PEBB modules. 

- The Hardware Manager, depicted together with a PEBB module in Fig. 1-8, was designed to 

control the newly developed 33kW PEBB modules. Built over a Xilinx FPGA, it supports the 

dual-ring-based PESNet communications protocol, and features several built-in protection 

devices and debugging features for aiding in the system design. Its new design exploits all the 

capabilities provided by VHDL coding, presenting great programming and reconfiguration 

capacities. 

A brief description of the main achievements for each of the above mentioned topics is provided 

in the sections hereinafter. 
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1.2 Universal Controller 

The main goals for developing a Universal Controller for PnP PEBB-based power electronics 

systems have been firstly to reduce their design cycle time and cost, secondly to increase their 

flexibility, modularity, and reconfigurability, thirdly to increase their reliability, supportability, 

and maintainability; and fourthly to increase their overall capacities and capabilities. As shown in 

our previous work on PnP PEBB-based power electronics systems, distributed control 

architectures at converter level makes these systems open, flexible, and simple to use. The 

Universal Controller plays a key role in this scheme, as it is in charge of performing all high-level 

application-oriented tasks. For this purpose, this controller was designed to offer enhanced and 

more powerful computational resources as well as a variety of communication interfaces, and was 

buih over a DSP/FPGA digital system architecture. As such, the Universal Controller is a main 

constituent of the PnP PEBB-based power electronics system structure proposed and developed in 

this project. 

From the goals aforementioned, the design cycle of a power converter is one of considerable 

importance given its implications on development and production costs. This cycle time is highly 

affected by the need to develop a new control system for every application, reason why the usage 

of a Universal Controller becomes apparently attractive. This allure is further increased when 

standardized interfaces are defined and established between all the system components. This 

project supports this goal by including the following interfaces to aid in the design of the control 

system, namely JTAG for the DSP and FPGA, 88 I/O pins connected to the FPGA, and a PCI 

interface. These I/O pins have a functional purpose after debugging, but they proved to be 

extremely usefiil during this stage as well, as they added excellent visibility into the FPGA code 

during runtime. The PCI interface on the other hand provided great visibility over the whole 

system by easily enabling the designer to monitor and access variables while the controller is 

running. This particular interfacing mode is still under development in collaboration with 

Northrop Grumman Corp. 

A key factor for a distributed power electronics systems is the actual communication between 

its components. This was addressed in this project by developing and upgrading PESNet, a 

protocol based on the industrial protocol MACRO. Such a network has the advantage of allowing 

for all components to be accessed and programmed through a single device, the Universal 

Controller. Also, PESNet employs a dual-ring fiber-optic network structure, which greatly 

increases the overall system reliability by providing dual and backup paths for accessing each 

component. 
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1.3 Control Software Architecture 

It has been empirically shown that the software architecture employed on PnP PEBB-based 

power electronics systems is just as important as the actual algorithms and data structures 

employed. On this matter, this project continued our previous work on software for embedded 

control systems, and proposed a power electronics control software buih over standardized 

modules -Elementary Control Objects (ECO)- having a high degree of reusability and 

reconfigurability. For this purpose, a kernel dubbed DARK was especially designed, evaluated, 

and successfully compared with commercially available kernels for industrial control systems. 

DARK met the goal of providing a high performance platform for running dataflow appUcations 

as in the proposed embedded control for power electronics applications. 

Further improvements for this embedded control kernel were attained by programming it in 

C++, which provided a better and more structured way of extending data chaimels for user- 

defined data structures. Also, a distributed, transparent messaging protocol for PnP PEBB-based 

power electronics systems was designed, which allowed for transparent messaging between 

controllers across a multi-controller application network. Finally, in order to assess the 

effectiveness and feasibility of the proposed and developed control, kernel, and protocol system 

several commercial software packages were investigated. Though the commercial software 

presented a fHendlier user interface through the use of a graphic development environment, the 

proposed system provided more flexible real-time control options, eased the design of distributed 

control systems, and required significant less redesign efforts. 

1.4 Hardware Manager 

The proposed PnP PEBB-based power electronics system architecture has as main power 

device controller the Hardware Manager, or simply put, the power stage controller. This 

controller is basically responsible for low level hardware oriented tasks. It is intrinsically 

application-blind, it actuates over its power components, and receives commands -from a 

Universal Controller- and transmits gathered information from its restricted system, i.e. values of 

current, voltage, temperature etc. Such a controller was completely designed, manufactured and 

successfully tested in this project. This new Hardware Manager was designed as part of the new 

33kW PEBBs also built in this project for testing and verification purposes. The new Hardware 

Manager employs new technology, making it fully compatible with the Universal Controller and 

capable of fully implementing the newly developed PESNet protocol with enhanced capabilities. 
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It is built over a Xilinx FPGA, supports the dual-ring communications network in use, has buiU-in 

protection devices, as well as several debugging features for aiding in its design. 

On a board level, the Hardware Manager design was done exploiting all the experience 

attained with the Universal Controller. Following a PEBB modular approach, every functional 

part of it, from communications to sensors, is basically independent of each other. In fact, some 

subsystems have the exact same circuit structure as in the Universal Controller. Software-wise, 

the VHDL code has been individually addressed per functions, which significantly simplifies any 

programming and troubleshooting required when modifying its code. Also, its communications 

capabilities were proven to every expectation, and showed an excellent performance, as well as 

the sensors operation. The Hardware Manager has sensors for measuring the power stage current 

and voltage, as well as the on-board temperature. This last reading is used as a protection device 

together with an over-current signal generated by the IGBT IPM itself. In all, the new 

PEBB/Hardware Manager has proven all its capabilities and usefulness for PnP PEBB-based 

power electronics systems. 

1.5 PEBB-Based Power Stage 

Up to the appearance of the PEBB concept for power electronics systems, medium to high 

power static power converters were mostly designed and manufactured on a customized, per 

application basis. For tailored designs as these ones significant optimizations in electrical, 

magnetic, and mechanical systems may be achieved, thus minimizing unwanted effects such as 

losses, parasitic inductances, capacitances, EMI, resonances etc. A PEBB-based system however 

lacks this optimization capability in the sense that it must provide for unparalleled modularity and 

reconfigurability, the very essence of its existence. In fact, a PEBB-based system is built having a 

variable space distribution, ideally an unbounded one which allows for easy reconfiguration, 

modularity and scalability. Consequently, these systems must deal with all parasitic effects 

associated to power electronics in order to operate successfiilly and become a feasible alternative. 

It is evident then that in order to minimize these obstacles intrinsic to PEBB-based systems a 

different design approach is required. Particularly, it now becomes desirable to design a 

distributed power stage structure in order to minimize all the aforementioned unwanted effects. A 

first step was hence taken in this project by performing a partitioning study, which determined 

both physical and information boundaries wherefrom to define PEBB modules in power 

electronics systems. From these analyses feasible power stage partitioning criteria were defmed, 

as well as information layers and communication and data channels applicable to distributed 

20 



control systems. Correspondingly, a power stage system was designed based on the temporal and 

physical distributions and partitions previously defined. New PEBB modules using the newly 

designed Hardware Manager were designed and manufactured, previously built PEBB modules 

were upgraded to accommodate for soft switching capabilities, and an appropriate cabinet 

structure supporting all the PEBB concept capabilities was built. All of these were successfully 

tested so far. 

From the work performed in this project, future improvements and actual modifications that 

will be necessary to make the electrical system structure fiilly compatible with the PEBB concept 

have been determined. Specifically, there is an apparent need for optimized design for busbars 

and busplanes for the DC bus. There's also a need for defining active and passive PEBBs, and for 

designing, specifying, and standardizing connectors, protection devices, low power distribution 

devices, etc. 
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2 UNIVERSAL CONTROLLER 

The Universal Controller is used to control PEBB modules. It is power level independent, 

and controls other modules via a fiber optic network. The controller has been through two 

revisions, and nine revised controllers were made based on issues found in the first revision. Fig. 

2-1 and Fig. 2-2 show the universal controller. 

'■     *■ 

Fig. 2-1 Universal Controller Front 
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Fig. 2-2 Universal Controller Back 

The universal controller has been designed to address the needs of the majority of power 

electronics appHcations in medium to large power electronics converters. Large systems need 

communication interfaces, status indicators, debugging tools, advanced control algorithms and 

fault tolerance. We kept this in mind when designing the controller. Also, in large systems 

components of converters can be distributed across large areas. For that purpose we have 

developed a communication protocol called PESNet, which allows these modules to be connected 

together in a fault tolerant fiber optic ring. This network structure was partially used in the 

preceding project, as it was just a single ring and hence not fault tolerant. 
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Fig. 2-3 Controller Functional Block Diagram 

2.1 Specifications 

There are several features desirable in a distributed controller. The most obvious is the need 

for a CPU to execute code written to control the application. The controller should be able to 

communicate with the external world in which it exists. This is done via standardized system 

interfaces. The standardized interfaces allow the controller to be quickly integrated into a system 

without having to design customized interfaces and support. Scalability is also a desirable 

property. Applications will require more than one controller. There should be a way for 

multiple controllers to work together to solve large problems. It is impossible to predict and 

implement every requirement for every application. There should be some way to expand the 

controller capabihty for unpredictable future needs. A block diagram of the fundamental 

controller properties is shown in Fig. 2-3. 

It is desirable to have a modular approach to implementation so that each module can be 

developed and tested incrementally. Once one module is debugged, it should remain functional 

while other modules are being developed. It should also be possible to deactivate one module if it 

is not required in the design. Also, being universal means that the controller should be portable 

across applications. The strategy to implement the controller should support reconfiguration to 

allow this. 
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2.2 Approach 

2.2.i Architecture 

The controller architecture consists of two main busses bridged by the FPGA. This approach 

allows for incremental debugging of the controller without having to worry about every block at 

once. This also allows for future architectures in which the FPGA could interact with the 

peripherals without having to know what the DSP is doing. An alternative would be to have a 

singe bus with every peripheral coimected to it. The controller architecture is shown in Fig. 2-4. 

There were two approaches possible when implementing the FPGA control code. The first 

approach allowed the thread of execution to pass from the DSP, through the FPGA, and into to 

the ASIC, which would service the request, return control to the FPGA, which would in turn 

return control to the DSP. 
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Fig. 2-5 FPGA Control Strategies 

The second approach is an asynchronous approach, where the DSP would interface with a set 

of control registers in the FPGA that would perform a specific task, most likely involving an 

ASIC. This architecture would require the FPGA to implement a command processor that would 

execute the commands placed in the command buffer in the FPGA by the DSP, thus creating a 

second thread of execution. The second thread of execution would need to synchronize with the 

first one in some way. This complicates the interface between the DSP and the FPGA. It would 

also mean that after the write to the FPGA returns, there would be no direct way to tell if the 

operation has completed or not. Reads from ASICs would also be complicated, as the data is not 

immediately available in the FPGA, and so there would first have to be a request, and then later, 

the data would become available after the FPGA had retrieved it. These two approaches are 

illustrated in Fig. 2-5. 

As more and more control blocks were implemented, the maximum clock speed of the FPGA 

started to drop very fast. Eventually, it became difficult to manage each block due to the 

increased propagation delay within the FPGA. Each control block would have to have address, 

data, and control lines. Most blocks passed data directly fi-om the DSP to the FPGA directly 

instead of manipulating the data. Taking this into account, a new architecture was developed that 

allowed the control blocks to control the data flow while not actually "seeing" the data 

themselves. Control data that is stored in the FPGA to set some control line, such as the blanking 

control for the hex display goes to a set of registers. This new approach is shown in Fig. 2-6. 
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In this architecture, several controllers can be connected together for tasks that require larger 

processing power. When the controllers are stacked, the DSPs and FPGAs for all boards appear 

in parallel with each other as shown in Fig. 2-7. The FPGA uses the ED of the DSP as part of its 

address scheme. It is therefore possible for a DSP to access a resource on the FPGA of another 

board as easily as it would access a resource on one of its own. 

2.3 Block Descriptions 

2.3.1 DSP 

The DSP chosen is an Analog Devices ADSP-21160 80 MHz floating point DSP. The DSP 

has the following features that make it attractive for use in advanced control architectures: 

• Single Instruction, Multiple Data execution 

• Intrinsic support for multi-processing 

• Built-in multiply and accumulator, barrel shifter, and ALU 

• Pipelined execution and instruction loading via Data and Address Generators 

• Host Port Interface 

• 2 Synchronous Serial Ports 

• Built-in control of external port 

The FPGA supports the DSP's access to other peripherals on the controller. The DSP 

interface has been designed according to the architecture described in ###. The DSP 

communicates with the FPGA using the data bus, the address bus, and some control signals as 

shown in Fig. 2-8. 
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When the DSP sends information to the FPGA, it first sets up the data and addresses, and 

then controls the READ# and WRITE# signals. The DSP supports different types of peripherals 

intrinsically such as SDRAM and SBSRAM. To simphfy the interface to the DSP, the FPGA 

interface was chosen to emulate SRAM. While the FPGA was processing the DSP's request, the 

FPGA would hold the DSP in a wait state until it is finished. The DSP is packaged in a 400-ball 

Ball Grid Array (BGA) package. 
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Fig. 2-9 Selector State Machine 

The FPGA is selected when ADDR[31..29] is equal to the processor ID as defined by the 

DSP-ID DIP switches, and when either one of the write signals or one of the read signals are low. 

Due to the propagation delay within the FPGA, an extra clock cycle was added to the 

SELECTED signal to allow every signal to stabilize before using those signals to decide on the 

next state or latch data. 

2.3.2 FPGA 

On start-up, the FPGA is configured from a Xilinx configuration flash, XC18V04-VQ44C. 

There are several configuration modes supported by the flash and the FPGA. The one chosen 

was the parallel SelectMap configuration method. In this method, data is loaded into the FPGA 

one byte per clock cycle. SelectMap also allows other features for advanced debugging and 

configuration that can be used via the JMl and JM2 connectors and the Multilinx programming 

cable. Due to time constraints, the JTAG interface of the multilinx connector was used. 

W 
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2.3,3 DAC 

There are several different types of DACs, including parallel and serial types. Due to the 

timing constraints, as well as the availability of a data bus, the parallel type was chosen. This 

also simplifies the control logic. 

The digital to analog converter chosen was an AD8582AR. The AD8582AR is packaged in a 

28 pin SOIC package, with 50 mil pitch. This DAC has the following features: 

• Two channels 

• 12-bit resolution using parallel interface 

• 0-4.096 Voltage output range 

• 2.5 Volt reference voltage 

• 16 microsecond settling time 
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The DAC is interfaced to the peripheral bus of the controller. The DAC is a 5 Voh device. 

To make the peripheral bus compatible for devices that are not 5 Volt tolerant, a LVCMOS buffer 

(Texas Instruments SN74LVC16244-ADGGR) was added between the DAC and the actual bus 

itself All signals come from the FPGA. Since the DAC is purely an output device, and sends no 

control or status signals back to the FPGA, the output enable pins of the LVC16244 buffer could 

remain active at all times. The chip v^^ould ignore the signals imtil the appropriate control signals 

are sent. 

The control for the DAC consisted of both types of data: that which is sent from the DSP, and 

lasted the duration of the transaction (referred to here as Transitory Data), and that data which is 

latched in the FPGA and remains after the transaction (referred to here as Persistent Data). The 

persistent data for the DAC is the RESET command, RST#, and the MSB signal, which decides 

during a reset which value the DAC should reset to: 0x000 or 0x800. These two data reside in the 

control register block. The actual data that changes the value of the analog channels (transitory 

data) is routed using the DAC block. 

The DAC block primarily functions as a timing controller for latching the value into the 

DAC. The setup and hold times must be valid for the DAC to recognize the new value. The 

DAC block uses a state machine that allows it to ensure that the data is working correctly. 

32 



BLOCK_EN = '0' 
or RESET L = '0' 

CS = '1' 
PDATA = DATA 

CNT = 0 

cs = •V            1 
PDATA = DATA 

BLOCK_DONE = '1' 

CS=WRL# 
PDATA = DATA 
CNT = CNT + 1 

Fig. 2-12 DAC State Machine 

TIME EVENT 

ADDRESS FROM DSP DECODED AND BLOCK INPUTS SET UP FOR DIP SWITCH 

SELECTOR ENABLES DIPSWITCH BLOCK 

DONE GOES LOW, INDICATING BLOCK IS WORKING. DURING THIS TIME, THE BLOCK ENABLES DIP 
SWITCH OE AND UPDATES BLOCK_DATA_OUT PORT IN FPGA 

DONE GOES HIGH, INDICATING BLOCK IS FINSIHED, AND DATA IS AVAILABLE OR HAS BEEN 
PROCESSED 

DSP DISABLES BLOCK, AND BLOCK TRISTATES 

Fig. 2-13 DAC timing diagram 

2.3.4 HEX Display 

The hex display is used for debugging and visual indication of status. There are tw^o digits 

displayed. During debugging, these digits can be used to represent a system variable, converter 

operating state, or setpoint. 
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The Tn.-311 was chosen because it automatically decodes the four bit data into the correct 

pattern to represent the corresponding data on the display. No decoding is necessary to 

implement in VHDL, allowing the data to be directly passed from the DATA bus to the PDATA 

bus.The hex display is interfaced to the controller via the peripheral data bus. It is a five voU 

device, and therefore, it exists on the VPDATA bus, which is the five volt extension of the 

PDATA bus. There are two control lines that are used. The first one is the blank input. When 

this is high, the hex display does not show any digit, and appears blank. The second control line 

is the latch input. When this is low, data passes from the VPDATA bus into the hex display. 

Typically, the data is set up, and then this line is pulsed low to allow the data to propagate into the 

internal latches in the hex display. When it is high, the hex display ignores the values on the 

VPDATA bus. ' 

The hex display is a memory mapped peripheral controlled from the FPGA. When the FPGA 

is addressed, and the selector determines that the address is the address of the hex display, it will 

set BLOCK_EN to high, and it will then wait for BLOCK_DONE to go low and then high. The 

following state machine shown in Fig. 2-15 represents the control for the hex display. Data is 

sent on to the PDATA bus, and it becomes stable while the device is in idle. As soon as the 

device becomes selected, the state machine moves into the active state. The latch is pulsed low, 

allowing the data on the PDATA bus to propagate into the hex display. The hex display will 

remain in this state until the counter expires, indicating that the setup and hold time prescribed in 

the datasheet has expired. After this, the state machine moves into the done state, setting 

BLOCKDONE to high, and setting LATCH back to high, freezing the data. The device returns 

to the idle state when the selector deselects the hex display control block 

The HEX display is in a DIP-14 package. In order to make it surface mounting, a SMT DIP 

socket was used. 
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2.3.5 DIP Switches 

DIP switches are useful for setting parameters that can be used as input to control code. The 

controller has eight user DIP switches that are general purpose. The DIP switches were 

interfaced to the peripheral bus due to a shortage of pins. In order to interface them to the bus, a 

tristate buffer was used. When the PDATA bus is tristated from the FPGA side, the buffer can be 

enabled to allow the DIP switch data to propagate to the bus. The DIP switch state machine works 

similar to the hex display, except that it must latch the data once it is available on the hex display. 

The state machine will not enable the tristate buffers if the DSP does not request a read. 
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2.3.6 PCI Mezzanine Interface 

The PCI Mezzanine Card interface is described in IEEE pi386.1, and is a daughter 

specification to the CMC (Common Mezzanine Card) specification, IEEE pi386. The CMC 

specification defines the size of a double-wide card to be 149mm x 149mm. The Universal 

Controller was chosen to be a double-wide mezzanine card because it was impossible to fit all the 

contents of the controller into a single-wide one. 

The PMC card plugs into a host carrier card that is specific to the host type that it is plugging 

into. For example, in a PC, there are host carrier cards to plug a PMC into the PCI bus. In a 

VME system, there is a carrier card chipset that can take a PMC, and convert the resulting signals 

in to ones compatible with the VME system. There also exist similar ones for compact PCI and 

other architectures. This decision was made so that there was no restriction on the host system 

type. 

The PCI Mezzanine Card Interface can use up to four connectors per slot, referred to as JPl, 

JP2, JP3, and JP4. JP3 and JP4 are used as I/O connectors. In the Universal Controller, these 

two are unused. The controller instead uses JPl and JP2, which carry the PCI signals to the host 

carrier card. 
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2.3.7 DSP Boot Flash 

When the controller is powered on or reset, the DSP will use this flash to load instructions 

and execute control code. While selecting flashes, it is desirable to have one with the following 

properties: 

• Boot Sector 

• Sector erasable 

• Standardized flash interface 
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This flash resides on the DATA bus lines [38..31] as specified by Analog Devices []. There 

are three control lines going to this device that are the equivalent of a read enable, a M^rite enable, 

and a chip select. The block diagram of the DFLASH - DSP interface is shovi^n in Fig. 2-19. 

According to the DSP hardware reference, the DSP addresses the flash via the use of the BMS# 

pin. This pin is also used to program the flash. However, it is complicated to use this pin, and 

even the code shipped with the demo board for the ADSP-21160 uses a different method. To take 

advantage of this already-available code, while still allowing the DSP to boot via BMS#, two 

methods of activating this flash are implemented. The flash can be activated by addressing a 

memory location in the range assigned to the flash. This is used to erase and program the flash, 

as well as to read data from it later in the program. The BMS# pin is asserted by the DSP on 

startup, and this method is equivalent to selecting the upper address bits to match the range 

assigned in the FPGA memory map. The demo code shipped with the ADSP-21160 flash, called 

EZ-KIT [] was modified for the AMD chip. The code was originally written for a ST-Micro 

flash, which used slightly different commands for writing and erasing. 

2.3.8 Peripheral Flash 

It is desirable to store data in a flash for diagnosis purposes. After a fault, the flash would 

provide a time history of the states. Other configuration information could be stored here as well. 

This flash is similar to the boot flash with the exception that it has no boot sector. 
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Fig. 2-20 FPGA and Cypress Communications chips interaction. 

2.3.9 Fiber Optic Interface 

Each fiber optic transceiver is connected to the FPGA directly. An initial version of PESNet 

has been implemented in the FPGA. However, the second version, PESNET 2.2, remains to be 

implemented in the future. This protocol supports so far a limited number of nodes. 

2.3.10 Peripheral expansion and debug connectors 

The peripheral expansion and debugging connectors serve the following functions: 

• Debugging VHDL modules 

• Interfacing boards that expand the functionality of the controller 

• Providing an interface into the system for a logic analyzer 

• Bus Monitor 
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Several examples of expansion would be fiber optic transmitters and receivers used to control 

peripherals local to the controller, such as crowbars or safety devices. It can also be used to 

generate PWM signals to control things such as analog and digital meters. They can also be used 

to implement serial busses to support peripherals such as LCDs. 

The peripheral expansion and debug connectors are pins directly connected to the FPGA. 

These pins can be programmed by writing custom VHDL modules that will control their 

behavior. These blocks interface to the control register or they receive commands from the data 

and address lines, enabled by the selector. 

One example where this was used was in the verification of the analog to digital converter for 

the hardware manager. The code was developed and debugged in simulation before the board 

was ready. Instead of waiting for the real hardware manager to come back, the analog to digital 

converter control block (written in VHDL) was placed in the controller, and interfaced to the 

peripheral connectors. It was easy to create an in-house PCB on which the ADC could be placed. 

Here, the block was verified. When the hardware manager came in, the ADC operation was 

already guaranteed. 

2.3.11 Global control connector 

A connector was made available to interface a daughter card that supports a higher level 

communication protocol for several purposes: 

• supervisory control of the converter (controller is a device controlled from a PLC) 

• Monitoring of the converter 

• Adding distributed periphery to the imiversal controller (controller is busmaster) 

This global control connector is interfaced to the peripheral bus, and supports 3.3V and 5V 

devices. The 3.3 V devices do not have to be 5V tolerant, as the 5V section of the bus is isolated 

using buffers. Several vendors make chips to support upper level communications. Some of 

these are listed below. 
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Table 2-1 List of high-level commercial communication chips 

Protocol Vendor Chip Description 
Profibus-DP Siemens SPC-2 Supports FDL 
Profibus-DP HMI ABIC AnyBus-IC single hybrid 

chip with digital and analog 
components 

Profibus-FMS Siemens ASPC-2 
Profibus-DP Profichip VPC3+B Slave ASIC 
LonWorks Cypress CY7C53150 
DeviceNet HMI ABIC AnyBus-IC single hybrid 

chip with digital and analog 
components 

ControlNet 
AS-i Bus ZMD A2SI-ST AS-i master 
Industrial Ethernet HMI ABIC AnyBus-IC single hybrid 

chip with digital and analog 
components 

The Global Control Connector has all of the peripheral address and data lines available, as 

well as the bus control lines, hi addition, there are ten lines private lines that are customizable 

depending on the ASIC that is used on the daughter card. Some of these chips use serial 

interfaces, in which case two or three of these lines will be used for the interface, and the bus 

interface is not used at all. The interface code is written in a VHDL module, and placed into the 

FPGA modular architecture, removing the placeholder for the global control interface. 

2.4 Methodology 

2.4.1 Universal Controller PCB Design 

There are many aspects of implementation that are not considered when designing the logical 

interconnection of components as in the previous steps. With so many components sharing the 

same signals, the layout of the controller needs to be considered carefully. The FPGA has 560 

connections to the PCB itself within a 3x3cm area. The DSP has 400. Many of these signals are 

switching at 40 or 80 MHz. It is important to consider the distance that these signals have to 

travel. 
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Another consideration is EMI shielding. Several components are noisy, and should be 

shielded so that the noise does not affect other signals on the PCB. With so many components 

switching at different frequencies, bypassing and power planes become important to consider. 

Having planes, in turn leads to issues such as copper balance vertically throughout the PCB. 

Another constraint to the PCB design is the mechanical layout specified by the CMC standard 

(PMC parent specification IEEE 1386). This specification requires the PCB to be 149mm x 

149mm with a thickness of 62 mils. There were both good and bad effects of this specification. 

The good effect is that the signal lengths were reduced, eliminating problems introduced due to 

long trances. The bad effect is the increased density of signals. The higher density of signals led 

to blind vias between three layers: Top and Midlayer 1, Top and Midlayer3, and Bottom to 

Midlayer 6. This added to the warpage of the PCB, and dramatically increased the cost. 

Another important area of the PCB was the optical transmitter. This area had very sensitive 

signals switching at 125 Mbps. This area is sensitive to noise, and so several precautions were 

taken to ensure its successful operation. First, an exact layout of the transmitter was given by 

Agilent Technologies, the manufacturer of the optical transmitter and receivers in application 

note 1066. The GERBER files were obtainable for this circuit. Although it was not possible to 

directly apply the GERBER files to the circuit, the layout could be copied point by point for every 

trace to exactly replicate the layout twice in the controller design. Since the design of this 

transmitter/receiver circuit used 4 layers, and the controller used Slayers, the additional layers 

were replicated as power planes to increase the noise immunity and add capacitance between the 

isolated power plane pair. 

The final version of the controller had a total of 709 nets, which were connected to a total of 

3280 pads. Additional characteristics of the PCB are Hsted in Table 2-2. 
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Table 2-2 PCB Attributes 

Attribulc Value 
Number of Layers 8 
Number of Holes 1978 
Number of Vias 1912 
Number of Components 396 
Smallest space between 
different nets 

5 mil 

Smallest trace width 5 mil 
Mask Type HASL 

While the PCB software, Protel 99SE, had autorouting capability, h was sufficient for such a 

dense 8-layer PCB. With the help of an external contractor, Gasha Gataric, the first version of the 

controller was manually routed. 

2.4.1.1   Quality Assurance 

During the development cycle, there were several points at which the controller was 

examined by people other than the developer. This is important, as there are implicit assumptions 

made by the designer that are impossible to recognize by someone who is looking at their own 

work. To address this, quality teams were assembled to examine the controller for defects in 

design at several stages. The teams consisted of electrical engineering and computer science 

B.S., M.S., and Ph.D. candidates. Methods used for quality assurance came fi-om previous work 

experience in a software development company, as well as fi-om [McConnell Software Project 

Survival], [Lewis, PMDR], and [Schertz and Whitney, Design tools for Engineering Teams], 

[Evans and Lindsay, Management and Control of Quality]. 

QA sessions were held after the completion of the schematics, but prior to the PCB design or 

modification. Two major sessions were held. The first one was during the design of the first 

board, and the second one was prior to submitting the modifications for the second board to the 

PCB manufacturer. Checklists governed the objectives of each QA session. Two teams of two 

people were assigned to each area of the reviews to avoid group think behavior while at the same 

time double-checking everything. There were several areas to review during each session. 

First, the schematic symbols had to be checked. Each schematic symbol was created from the 

component datasheet. QA teams checked that each pin of each component matched each name 
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on the schematic symbol.  A discrepancy at this point would propagate through the rest of the 

design, and would be very hard to fix in the future. 

The second type of check was to make sure that the pad size and location of each PCB 

footprint matched the specifications on the datasheets. If the footprint was wrong, then the 

component would not fit after manufacturing. It is also important to check that Pin 1 was in the 

same location, as some packages, especially TQFP and PLCC types vary the location of pin 1 

from component to component. 

The third type of check was a netlist check. It is easy to misspell a net name, or to use 

different notation in different locations when they should be the same. Examples of this are: 

+3.3V vs. 3.3V vs 3V3 vs VCC. Similarly, active-low signals have the same problem: BMS, 

\BMS, nBMS, BMSn, BMS_L. Other issues that can occur in this area are nets that are the same, 

but they are still separated due to some aspect of the PCB software, Protel 99SE. 

For the PCB check, several issues were examined: Firstly, the mechanical dimensions were 

checked. The CMC specification has several holes for the double-CMC form factor that specify 

the x-y location as well as the diameter and clearance for each hole. Secondly, aspects of the 

routing were checked for undesirable features, such as multiple vias in a single trace, as well as 

traces going past noisy areas of the PCB, such as oscillators and power supplies. Noisy traces 

such as clocks had guard traces or planes to shield these components. Other sensitive areas were 

the communication transceivers, which transmitted at 125 Mbps, as well as the transceivers and 

FPGA. Thirdly, the power planes were checked to ensure that they were connected correctly. In 

the second PCB check, the copper balance was also checked. A significant defect in the first 

design was the copper imbalance from top to bottom of the PCB. If the copper is not balanced, 

the PCB will tend to warp and twist, which in turn makes large surface mount components 

difficuh to solder, especially BGA (ball grid array) devices such as the DSP and FPGA. One 

PCB failed assembly due to this issue, as the X-RAY revealed bridging between two connections 

on the comers of the BGAs. This is discussed more in the issues area. 

Many of these QA issues resulted from the initial inspection of the PCB and the resulting 

tests. They were added into the second revision, as the issues were recorded in a database, which 

in turn created a checklist of issues to explicitly verify in the new design. As issues were found, 

they were added to a quality database to make a complete history of the issues found in the PCB, 

who found them, when, what category they were related to, and a history of comments associated 

with that issue describing what actions were taken to correct it.    This database in tum 
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automatically produced a release checklist that was reviewed to ensure that all issues were 

accounted for before manufacturing the second design. 

During several points in the design and development cycle, the design was presented to 

project stakeholders for review and comments. Using their feedback, the design was modified to 

include their mput. Outcomes such as the use of PMC resulted from these discussions. In 

addition to these changes, one stakeholder (General Dynamics Advanced Information Systems) 

conducted another PCB design review, and feedback to each change was discussed ring weekly 

teleconferences that lasted from 30 minutes to 90 minutes. The first revision of the PCB turned 

out very successful. There were some issues with equipment and software, which took time to 

fix, but once these issues were solved, there were not a lot of problems left, as the QA sessions 

identified many problems that would have rendered the PCB unusable if they were not identified. 

2.4.2 Issue Tracking Database 

It is important in complex designs to keep track of problems so that they may be fixed before 

the next release. A database was designed that would maintain a list of issues, as well the history 

related to that issue. This database facilitated the QA process. The fields considered are shown in 

Table 2-3. 
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Table 2-3 Issue Tracking Database 

Field Name                           Description 
IssueNumber A unique id that describes the issue 
Issue Title A brief description of the issue 
Date Opened The date that the issue was found 
Date Closed The data that the issue was closed 
Assigned To The person who is responsible for resolving the issue 
Assigned By The person who submitted the issue 
Issue Type Issue: 

Assignment: 
Issue Status Open: Issue is submitted. 

InProgress: Issue is being worked on 
Resolved: Issue has been fixed 
Closed: Issue has been verified and closed. 
Reopened: Issue has been fixed, and verified, but 
now it is again a problem, or a canceled issue has 
become of interest again 
Canceled: Issue will be ignored 

Issue Severity Critical: Board cannot be manufactured with this 
defect, or it will be unusable 
High: Board can be manufactured with this, but the 
fimctionality will be severely impaired 
Medium: Board can be manufactured with this, but 
some features will be disabled 
Low: Board can be manufactured, but some features 
will not work exactly as designed 
Cosmetic: Board functionality will not be affected 

Issue Priority High: Issue must be resolved ASAP, because it will 
impede fixture work on the controller until it is 
addressed. 
Medium: Issue may have a complicated fix that 
should imply that it should be fixed before it becomes 
harder to fix as more work is done. 
Low: Issue is not of immediate concern. 

Project A description of which project this issue belongs to 
Subproject A description of which part of the project this issue 

belongs to 
Description A more detailed description of the problem or how to 

reproduce it 
Comments As work is done, this field is updated to keep track of 

changes, status, and concerns associated with this 
issue. Each entry automatically places the date and 
submitter of the comment in the field. 
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Fig. 2-21 Shielding Planes 

2.4.3 Revisions and Final Design 

After receiving the first design, feedback from the assembly house on the fabrication house, 

feedback fi-om General Dynamics, and in-house testing, several modifications were planned for 

the second version of the PCB. One of the significant improvements was the power plane 

bypassing capacitors. Originally, the capacitors had traces that made a circular path fi-om the 

capacitor to the via. In the second design, the vias were moved much closer to the bypassing 

capacitor pads, and larger traces were used to connect to these. General Dynamics also suggested 

that the bypass capacitors should not be connected to the pins of the device. Instead, the purpose 

of the capacitors should be to bypass the plane beneath the device, and other vias should bring 

that power up to the component as close as possible. Several changes were made, especially next 

to the Cypress transceivers to accommodate these suggestions. 

The issue of copper balance significantly affected the PCB. To address this, additional 

copper, connected to the ground planes, was added to the perimeter of the PCB in the unused 

areas of the midlayers. Additional, larger planes were added to the top and bottom of the PCB, 

and were able to add shielding to clock buffers, oscillators, and the communication chips, as 

shown in Fig. 2-21. Based on feedback from the assembly house, the finish was changed fi-om 

LPI to HASL, as it was easier to mount the BGA components. Other issues identified by the 

manufacturer include a lack of solder mask on some the top of some vias. This becomes a 

problem with BGA components, as it allows the solder ball on the BGA to migrate into the via 

hole, creating an open circuit between the device and the pad. 
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Fig. 2-22 Modifications to U24 

2.4.4 Final Design Modifications 

After receiving the controller back, most functionality was verified. The fiber optic 

components required additional modification in order to ensure that they were functional. Two 

cuts are required on U24, and two jumpers need to be created, as illustrated in Fig. 2-22. The two 

black lines indicate the jumpers, and the two red lines indicate the cuts. Note that this image is 

mirrored when looking at this side of the board. That is, U24 is to the left of U25 when the 

communication chips are facing up. 
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3 SOFTWARE ARCHITECTURE 

3.1 Introduction 
A power electronics control system is a real-time system—it operates using limited resources 

and under a set of deadlines. As distributed control architectures become commonplace for 

power electronics systems, the size and complexity of the corresponding control software will 

increase. As a result, the design and specification of the overall software structure become more 

significant issues than the choice of algorithms and data structures used in the computation [i]. 

Structural issues in software design include the organization of a system as a composition of 

components; global control structures; protocols for communication, synchronization, and data 

access; allocation of fiinctionality to design elements; composition of design elements; physical 

distribution; scaling and performance; and selection among design ahematives. This is the 

architectural level of software design. 

The traditional procedural or imperative approach to designing embedded control: soflrware 

results in a main-program-and-subroutine architecture that has several disadvantages. The control 

software is hard to maintain and modify. The software is tightly coupled to the hardware. New 

systems typically require significant redesign effort, because the main-program-and-subroutine 

architecture does not support software reusability well. 

To address these shortcomings, we present a different approach to structuring software 

designs. Dataflow is a style of software architecture that strongly supports reusability and 

reconfigurability [ii]. In the dataflow style, a control apphcation is implemented as a set of 

concurrently executing processes, which we call elementary control objects (ECOs). ECOs 

communicate through one-way message queues called data channels. Each ECO is independent, 

and knows nothing about the other ECOs in the application—it merely consumes data from some 

channels and produces results on other channels. Dataflow computing is reminiscent of signal 

filtering and processing, and leads one to design ECOs that are modular and reusable. 

Constructing control applications then becomes the process of picking ECOs from a library and 

"plugging them together" into the desired pattern. 

This chapter will be organized as following. Section 3.2 gives an overall description of 

dataflow architecture. Section 3.3 presents dataflow implementation of quite a number of 

49 



applications. Sections 3.4 and 3.5 present the real-time kernel design in C and C++ respectively. 

In section 3.6 the communication protocols of transparent messaging between multiple dataflow 

software is described. And finally section 3.7 compares the dataflow approach with a widely 

commercially used software development platform. 

3.2 Dataflow Architecture 

We propose an alternative software architecture for developing control software by 

composing reusable modules: dataflow [iii], [iv], [v]. This architectural style has the following 

properties: 

• It minimizes coupling between software components. 

• It encapsulates hardware dependencies. 

• It encourages highly reusable components. 

• It supports component-level and architecture-level reconfigurability. 

• It allows transparent, distributed communication between components, and thus supports 

distributed execution naturally. 

• It addresses issues of scalability, expandability, and upgradeability. 

3.2.1 An Overview of the Dataflow Architectural Style 

Software written using a dataflow architecture consists of a collection of independent components 

running in parallel that communicate via data channels; such a design can be succinctly depicted 

graphically, as shown in Fig. 3-1. In Fig. 3-1, each node is a computational component and each arrow is a 

buffered data channel. Each concurrently executing node is a self-contained software part with well- 

defined behavior. Data channels provide the sole mechanism by which nodes can interact and 

communicate with each other, ensuring minimal coupling and greater reusability. Data channels can also 

be implemented transparently between processors to carry messages between components that are 

physically distributed. Choosing this component model for embedded control software alleviates many of 

the negative aspects of the more traditional main-program-and-subroutine organization. More importantly, 

however, it also opens up the possibility of developing a library of commonly recurring, standardized 

control software fiinctions encapsulated in reusable dataflow components. Such a design library would 

allow a new control application to be configured rapidly from an existing collection of components. 
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Fig. 3-1 Dataflow architecture. 

3.2.2 Elementary Control Objects (ECOs) 

In this report, dataflow nodes are called elementary control objects (ECOs) to reflect their 

role as the building blocks of larger control applications. Each ECO manipulates the input data 

that it receives according to its behavior, generating output that can be connected to other ECOs. 

There are no explicit calls between ECOs—in fact, an ECO has no knowledge of the other nodes 

the system comprises, or of the identities of the other nodes with which it communicates. This 

inherent independence allows ECOs to be treated naturally as concurrently executing, active 

objects. This natural concurrency, together with the ability to transparently map data channels 

across physical component boundaries, provides a direct and simple mechanism for supporting 

the distributed control of power electronics systems. 

An ECO contains an input and output data channel description, a startup parameter 

description, and an implementation, as illustrated in Fig. 3-2. Three distinct types of ECOs exist 

within the embedded control domain—computational ECOs, coordination ECOs, and driver 

ECOs. A computational ECO embodies some specific computational behavior needed for an 

application. Fig. 3-3 shows several examples of computational ECOs. A coordination ECO, on 

the other hand, is designed to support transparent management and control of distributed system 

hardware assets, as exemplified in Fig. 3-4. Driver ECOs encapsulate hardware dependencies 

and provide a standard program interface to control hardware. Fig. 3-5 shows an A/D driver 

ECO. 
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Fig. 3-5 A/D driver ECO. 

3.2.3 Data Channels 

Data channels serve as the sole communication paths connecting ECOs into a cohesive 

control algorithm. Each data charmel connects a pair of ECOs: the source ECO generates data 

and the sink ECO consumes data. Note that data channels are unidirectional—data can only flow 

from one source ECO to one sink ECO. Data chaimels carry typed data based on the application 

requirements; strong typing helps detect certain kinds of interconnection errors early during 

development, rather than later during operational testing. Each data channel has a data queue to 

buffer data between ECOs operating at different speeds. The application designer configures 

each data channel's data type, buffer size, source connection, and sink connection are when 

developing the overall software structure. 
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3.2.4 Dataflow Graph 

The dataflow graph describes the control software configuration as a composition of ECOs 

interconnected with data channels. Fig. 3-7 shows the dataflow graph of control for a close-loop 

3-phase inverter. Annotations on the graph specify ECO startup parameters, ECO priorities, ECO 

execution policies, data channel property choices, and data channel buffering pohcies. Designing 

a control apphcation involves constructing such a dataflow graph by selecting ECOs from the 

design library and connecting them together. Additional user-defined or application-specific 

ECOs are also easily supported. ECOs within the dataflow graph can be allocated to different 

processors for distributed execution. 

3.2.5 Dataflow Architecture Real-time Kernel (DARK) 

Unlike applications that are built up from simple subroutines, dataflow applications require 

support for their unique features, including support for concurrent execution, data channel 

buffering, interprocess synchronization, and interrupt handling. One approach to providing this 

infrastructure is to encapsulate it in a small, embeddable, real-time operating system (RTOS). 

Such RTOSes are often called "micro-kernels" because, in comparison to full-featured RTOSes, 

they are stripped of all but the most minimal features to provide extremely efficient services in a 

minunal memory footprint. 

3.3 Dataflow applications implementation 

We implemented the embedded control software for quite number of apphcations using 

dataflow architecture. The open-loop 3-phase inverter is the simplest application, while the 4-leg 

inverter is a fairly complicated application. 

3.3.1 Open-loop 3-phase Inverter 

The DFG for the open-loop 3-phase inverter application is shown in Fig. 3-6. This is the 

simplest application that we have used in our experiments. The control algorithm is sinusoidal 

PWM (SPWM). It consists of three LookupJSin ECOs that receive a Start signal from their 

boolean input data channels. They look up a value from a circular table that they maintain using a 

table pointer. After every look-up, the table pointer is incremented. The table source and the 

modification step for the table pointer are stored as part of the ECO's configuration information. 

The output values of the three ECOs have a phase difference of 120 degrees. These in 

combination, form input to the Modulator and fire it to produce three floating-point results that 
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Fig. 3-6 Open-loop three-phase inverter. 

form inputs to the three PEBBdrivers. The PEBBdrivers convert the data from floating-point 

format to a format of control information that can be understood by the power stage, which they 

will be inputs to the following two applications are relatively more sophisticated applications than 

the open-loop application. 

3.3.2 Closed-loop 3-phase Inverter 

A switching cycle in the closed-loop 3-phase inverter shown in Fig. 3-7 starts with the firing 

of the two Lookup Sin ECOs by external interrupts, and the input of external feedbacks fi-om AID 

converters to the AbcDqo ECO. 

The outputs of the Lookup_Sin ECOs go to 1-2 duplicators because the same output has to be 

duplicated for both the AbcDqo and the Modulator. On receiving both the feedback information 

and the outputs from the LookupJSin ECOs, the Abc_Dqo ECO transforms the input abc 

coordinates to dqo coordinates. These dqo coordinates form inputs to the 2-d regulator, which 

performs PI regulation to get duty cycles in the dqo coordinates. The dqoalbe ECO transforms 

the dqo coordinates back to aPy. After this, the 3-d modulator performs modulation on the duty 

cycles. The generated duty cycle information forms input to the power stage. 
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Fig. 3-7 Closed-loop three-phase inverter. 

S.3.3 Boost Rectifier 

Fig. 3-8 shows a dataflow graph for a 3-phase boost rectifier closed loop control. There are 

two control loops: current loop and voltage loop. The voltage loop should be executed first to 

generate reference for the current loop. For the 3-phase current loop control, the dq 

transformation technique is used. 

All sensed data are implemented as interrupt-driven data channels, synchronized by the 

switching clock. The rising edge of the switching clock causes the execution of the corresponding 

interrupt handler, in which all the sensed data, phase currents and voltages and dc voltage are 

updated. Those ADC drivers then translate those sensed data to correct values, respectively. At 

this point ECO 1-D regulator and synchronize are ready. The dc voltage is regulated in the ECO 

1-D regulator, and the current loop reference djref^^ generated. The synchronize ECO tested the 

phase voltages and generate a boolean output to indicate whether the phase angles need 

synchronizing. 
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Fig. 3-8 Closed loop control for 3-phase boost rectifier. 

The two lookupjable ECOs have two different behaviors depending on different inputs 

combinations. At normal condition, if the phase voltages do not need synchronizing, the 

lookupjable ECOs increment their table pointers and output the table value; otherwise, the table 

pointers will be reset. Through ECO duplicator, the sin and cos values are copied and directed to 

two different ECOs. So far, the abc_dqo ECO is ready to transform the phase currents in abc 

coordinates to dqo coordinates. Then the 2-D regulator performs the current loop regulation with 

the reference generated from the voltage loop. The regulated currents in dqo coordinates will then 

be transformed back in aPy coordinates through ECO dqo-aPy. Then the ECO 3-D Modulator is 

ready to synthesize duty cycle information for each phase. In the PEBBdriver ECO, the duty 

cycle information will be translated to generate switch pulses at the phase leg gates. 

33.4 Closed-loop 4-leg Inverter 

Fig. 3-9 shows the dataflow graph of control for a closed-loop 4-leg inverter. Dq 

transformation technology and SVM are still employed in the application. Since this application 

contains four phases, so the dq transformations and SVM has one more dimensin than those are 

used in the previous applications. And the regulation of output voltages is decoupled into three 

independent regulations. 
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3.4 Dataflow Architecture Real-time Kernel (DARK) 

This section provides an insight into the architecture of Dataflow Architecture Real-time 

Kernel (DARK). Firstly, the requirements of the dataflow applications imposed on DARK and 

specific demands of power electronics control applications is discussed. Then the kernel 

infrastructure is presented, followed by a discussion of some prominent kernel features, 

higehghtened by a description of the configurable options of DARK. Finally, the DARK design is 

assessed experimentally. 

3.4.1 Real-time Kernel Design Requirements 

As presented in section 3.2, dataflow software is structured significantly different from the 

legacy control software, which imposes different requirements on the underlying platform or the 

kernel [vi]. 
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The main requirements imposed on the underlying kernel by dataflow appUcations are listed 

below: 

1. High Performance: The components of dataflow are used to replace the equivalent 

hardware components in power electronics controllers. In these cases, the execution 

speed of the control software becomes an important factor because software is generally 

slower than the hardware. So, the kernel for these applications should have minimal 

overhead and high execution speed. 

2. Faster Context Switching: Dataflow applications tend to have a larger number of 

processes or threads than applications developed using other techniques. While a larger 

number of independent, reusable, components makes application design easier, it can lead 

to an increase in the amount of context switching overhead. The kernel should make an 

attempt to reduce this overhead by increasing the speed of context switches as well as 

limiting the number of context switches. 

3. Efficient Inter-Component Communication: The fact that processes only communicate 

via data channels implies that there are frequent (but usually small) interactions between 

processes along these channels. Ensuring mutually exclusive access to critical state 

within a data channel provides another potential for increased overhead in dataflow 

applications. The kernel should provide support for efficient inter-component 

communication with minimum overhead. 

4. Dataflow Scheduling: Unlike traditional processes that are scheduled based on their 

priorities alone, dataflow processes are scheduled on the basis of both the priorities and 

data in the incoming data channels. Moreover, the dataflow processes should not be 

awakened by every incoming message. The kernel should provide an efficient mechanism 

to specify when a dataflow process is ready to execute. 

5. Component Execution with Dynamic Priorities: A dataflow process can wake up due to 

data in different sets of incoming channels. Depending on the set, it can take specific 

actions. The kernel should facilitate this, in addition to adjusting the process priorities 

according to the actions they are taking. 

3.4.2 DARK Architecture 

DARK is implemented in C, with a few key elements in assembly (context switching, dual 

register set support, and interrupt handling).    Because it is intended for embedded power 

58 



electronics control, it currently runs on Analog Devices SHARC 21xxx 32-bit digital signal 

processors. Dataflow processes, or ECOs, are implemented as C functions. DARK uses a 

statically initialized array of ECO descriptors, together with a statically initialized array of data 

channel descriptors, to initialize the application at startup. 

3.4.2.1   Kernel Components 

As discussed in 3.2, dataflow applications are composed of two building blocks: nodes and 

data-channels. DARK uses threads to encapsulate dataflow nodes or ECOs, whereas the data- 

channels are implemented as circular message buffers or mailboxes. 

3.4.2.1.1  Threads 

For concurrent execution, ECOs could be implemented as either separate processes or 

separate threads. Processes run in separate address spaces and include program code and current 

activity, as represented by the value of program counter and the contents of the processor's 

registers. A process also contains a runtime stack, containing temporary data (such as subroutine 

parameters, return addresses, and temporary variables), and a data section containing global 

variables. A thread, on the other hand, is an entity capable of executing concurrently with other 

threads and has its own runtime stack. Unlike processes, threads run together in a single address 

space. The threads share with peer threads their code section, data section, and operating system 

resources such as open files and signals. The extensive sharing makes CPU switching among peer 

threads and the creation of threads less expensive, compared with context switches among 

heavyweight processes. Although a thread context switch still requires a register set switch, no 

memory-management-related work needs to be done. On the negative side, like any parallel 

processing environment, muUithreading may introduce concurrency control problems that require 

the use of critical sections or locks. 

Threads incur less overhead, allow faster interprocess communication, are more memory- 

efficient, and support faster context switching. These are the reasons why threads are preferred 

over processes in embedded systems, despite their inability to provide memory protection. As a 

result, DARK maps each ECO or node in the dataflow graph (DFG) to a separate thread (thread 

and ECO are used interchangeably hereafter). 

For each thread, the user provides the stack size, priority, ECO function, and firing rule. The 

stack size required for a thread depends on the number of local variables used and the nesting of 

function calls in the ECO's code. The priority given by the user is the initial priority assigned to 
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the thread when the application starts. The kernel uses the firing rule associated with a thread for 

scheduHng. All of the runtime information associated with an ECO is stored in a structure called 

Thread Control Block (TCB). There is one TCB associated with each ECO or thread. The TCB 

serves as the repository for any information that may vary from thread to thread. The structure of 

a TCB in DARK is given in Fig. 3-10. 

typedef struct 
{ 

ECO Data p; 
ECO eco; 
Context tliread env; 
Thread State tliread state; 
Firing^Rule firing^rule; 
Firing_Mask injorts_ready; 
int walieup_time; 
int deadline; 
unsigned int* stacl(_pointer; 
unsigned int stacl( size; 
bool in OS call; 

}TCB; 

Fig. 3-10 Thread control block. 

All of the information in the TCB is initialized during application startup. The ECO_Data 

structure p is the static descriptor used to initialize the ECO. It contains information provided by 

the application developer that is used by the ECO during its execution. Each ECO is implemented 

as a C function. The eco field points to the function that represents the ECO. The Context 

structure is used for saving and restoring the runtime environment of the thread during context 

switching. The current thread state is stored in thread_state. The f iring_rule and 

in_j)orts_ready fields are used for scheduling, whereas wake_up_time is used for time 

management. The variable deadline stores the time by which the ECO should finish execution 

to meet the real-time deadlines of the application). There is a separate runtime stack for each 

thread. The field stack_j3ointer points to the stack space allocated for the thread. The size of 

the stack is given by stack_size. The field in_OS_call is used for synchronization of 

threads to prevent shared data problems. 

3.4.2.1.2 Data-Channels 

DARK maps each arc in the DFG to a typed data channel that is implemented as a circular 

byte buffer. Each data channel has a Queue Control Block (QCB) that stores the information 

shown in Fig. 3-11. 
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typedef struct 
{ 

int DC_id; 
Type_Tag type; 
short int elenient_size; 
Array_Descriptor array_diraensions; 
Overflow_Style      overnow_style; 
int front; 
int rear; 
int size in bytes; 
volatile int size in elts; 
volatile int num entries; 
bool blocked; 
bool interrupt_driven; 
Process* source thread; 
Process* sink thread; 
char bufferllj; 

}QCB; 

Fig. 3-11 Queue control block. 

Each data channel has an id used for internal management. The type field stores the type of 

elements that can be stored in the data channel. This type tag can be used for run-time type 

checking through the DARK API in debug builds; alternatively, this feature can be turned off 

using preprocessor definitions to eliminate the corresponding overhead. DARK data channels 

support all primitive data types along with complex data types like multi-dimensional arrays, 

strings, and uninterpreted byte vectors. The field element_size stores the size of one element 

in the data channel, whereas array_dimensions stores the array dimensions, if the data 

charmel is of array type. The application designer must specify what happens when a data 

charmel's source ECO attempts to write new data while the channel is full. The writing ECO may 

block until space is available, overwrite the newest element, or overwrite the oldest element. The 

overf low_style field determines the action to be taken in such cases. The variables front, 

rear, size_in_bytes and size_in_elts are used for queue management. The 

num_entries field contains the current number of elements in the queue. The status variable 

blocked is true when a thread is blocked while attempting to read from or write to the data 

channel. The data channels can have two entities as their source nodes: ECOs and Interrupt 

handlers. If the source for a data channel is an interrupt handler, then it is called an interrupt- 

driven data channel. The field interrupt_driven is true for such charmels. The variables 

source_thread and sink_thread point to the source and sink ECOs respectively. 

The QCB block together with the space for the data channel's element buffer is allocated as a 

single contiguous chunk of memory. This technique allows the element storage space to be 

accessed as an array by using the buff er field. Further, the kernel allocates all QCB blocks and 

element storage segments in one large block to reduce dynamic memory management overhead. 
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DARK provides a simple API to the user for interacting with data channels. The user reads 

from or writes to a data-channel by calling a function of the form: 

<operation>_<type>_DC {). Here the operation is either "read" or "write," and the type is 

the type of data to be read or written. Separate functions for each data-type aid in type checking. 

Internally, these functions call a single OS operation to read or write raw bytes. Other functions 

for obtaining the status of a data channel or flushing all entries are also provided. The API will be 

discussed in detail in the next chapter. 

3.4.2.2   Kernel Features 

This subsection provides an in-depth explanation of the important features of DARK. We 

start by discussing the Scheduling approach taken by DARK, designed especially for dataflow 

applications. First we describe the different states of the threads. The high speed context 

switching provided by DARK is discussed next. Approaches taken for the time management and 

interrupt handling are described. Then we explain a simple approach taken by the kernel for 

preventing shared data problems. The limited real-time support provided by the kernel to monitor 

deadlines is also discussed. 

3.4.2.2.1  Scheduling 

When more than one thread or process is runnable, the operating system must decide which 

one to run first. The part of the operating system concerned with this decision is called the 

scheduler, and the algorithm it uses is called the scheduling algorithm. 

In dataflow, a node (ECO) is ready for execution when it receives data on (some of) its input 

data channels. A general-purpose RTOS will typically schedule processes based on their 

priorities, ignoring data channel activities. Some RTOSes also support event-based notification 

for individual mailboxes or message queues. When using such kernels for dataflow, however, the 

user may be forced to check the status of several incoming channels inside the ECO code to 

ensure that all necessary data is available before proceeding. Unhke other RTOSes, DARK uses 

both priority and the status of all incoming data channels, together with a set of firing rules that 

specify what combination(s) of incoming data the ECO is waiting on. Thus, a thread starts 

executing only when all necessary data is ready. 

DARK makes scheduling decisions using the firing rules associated with each ECO. Fig. 3-12 

illustrates the structure of a firing rule, which is an array of one or more records consisting of a 

f iring_mask and a new priority as the fields. The firing mask is a binary mask that 
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specifies the input data channels that, if filled, should trigger the ECO to wake up (change to 

ready state). For example, the fning mask 00000111 indicates that the ECO is ready to fire when 

it has data on channels 0,1, and 2. 

typedef struct 
{ 

unsigned int firing_mask; 
short int    priority; 

} Priority_Flrin^Mask; 
typedef Priority_Firing_Masli* Firlng_Rule; 

Fig. 3-12 A firing rule. 

An ECO can have more than one firing mask associated with it. For example, it can take one 

action when it has data in three incoming channels, while it can take another action when it has 

data in only two incoming channels. The appHcation designer statically arranges the firing masks 

in the firing rule in order of their priorities. The priority field associated with a firing mask is 

the new priority that is assigned to the thread if the ECO is triggered as a resuU of the 

corresponding firing mask. To support efficient mask testing, the current status of all input 

channels is maintained in the form of another bit mask in the in_j)orts_ready field of the 

TCB. Every data channel read or write operation updates the corresponding bit of this mask. The 

implementation of the scheduler will be discussed in detail in Chapter 5. 

3.4.2.2.2  Thread Management 

The state of a thread is defined in part by the current activity of that thread. In DARK, a 

thread can be in one of the following six states at any time: ready, blocked, 

wait_f or_f ire, timed_wait, timed_wait_f or_f ire and dead. Fig. 3-13 illustrates 

this state model. When the kernel starts, each thread is in the wait_f or_f ire state because it 

is waiting for data. When a thread fires, it goes into the ready state. A thread blocks when it 

tries to read from an empty data channel or write to a full data channel. Once an ECO finishes 

processing incoming data, it calls the wait_to_f ire {) OS operation to enter the 

wait_f or_f ire state until more data comes along. An ECO can also delay execution for a 

pre-determined time, which puts the ECO into timed_wait state. The timed_wait_f or_- 

f ire state is a combination of wait_f or_f ire and timed_wait. If an ECO is in this state, 

it will awaken either when the specified time expires or when its firing rule is triggered. Finally, 

an ECO enters the dead state when it finishes execution. 
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Fig. 3-13 Thread state diagram. 

Due to the data-driven nature of dataflow processes, most of the thread management is done 

through operations carried out with every data channel read and write call. A read operation will 

unblock a thread waiting to write, as well as update in_ports_ready. A write operation will 

unblock a thread waiting to read, update that thread's in_ports_ready, test the listening 

thread's firing rule, and make the thread ready if it is triggered. Because of this relationship, 

DARK calls the scheduler after each read and write operation. If a thread is fired after these 

operations, it is placed in the ready queue according to its priority. The scheduler is also called as 

part of other OS functions, including wait_f or_f ire (), timed_wait (), and timed_- 

wait_f or_f ire (), so that the system can switch to an alternate ready thread if necessary. 

3.4.2.2.3 High Speed Context Switching 

The scheduler for an operating system can run as a separate thread, or can be called by other 

threads passively. DARK uses the former approach and has an active scheduler because an active 

scheduler aids in preemptive scheduling. Like most RTOSes, DARK saves and restores only 

selected registers during a context switch. The registers that are not used by the C run-time 

environment are not saved, so use of assembly language in ECO code requires special care. Most 

context switches in a dataflow application occur between the scheduler and executing threads. 

Minimizing the cost of such switches will increase performance. DARK supports the use of a 

dual-register-set architecture to support high-speed context switching between the scheduler and 

application threads, reducing the switching time by 80%. 

Many digital signal processors used in embedded control have two register sets for increased 

performance. For example, the Analog Devices SHARC 21062 microprocessor on which DARK 

was originally implemented has a primary set and an alternate set of registers. DARK uses the 
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primary register set for the kernel while the secondary set is used for executing application 

threads. Switching between the scheduler and the application involves simply flipping one bit in a 

control register and saving/restoring some key status registers. This approach leads to a drastic 

decrease in the context switching time between the DARK scheduler and application threads, as 

seen in Fig. 3-14. 

g 300 

DARK: 
OS/ECO 

DARK: 
ECO/ECO 

VDK++     MicroC/OS- 

Context Switch 

Fig. 3-14 Comparison of context switching times. 

DARK'S scheduler-to-application context switch is five times faster than the context switch 

that occurs between application threads. Figure 3.5 also shows the context switching times taken 

by two other commercial RTOSes (on the same processor). 

3.4.2.2.4  Time Management 

DARK allows an ECO to request a timed delay. In other RTOSes, the kernel typically checks 

each waiting thread at every clock tick, and adds it to the ready queue when the waiting period 

has expired. This technique can introduce unnecessary cost if there are more than a tiny number 

of waiting threads. 

DARK uses a different approach to handle timed delays. When the timed_wait {) or 

timed_wait_f or_f ire () function is called, the delay is converted into an absolute time by 

adding the current system time to it. Then, it is stored in the TCB. Next, the thread is then added 

to a (circular) waiting queue arranged in ascending order by absolute time. When a thread is 

added to the waiting queue, a kernel variable act ions jending is set to indicate that the 

scheduler should check the waiting queue. Each time the DARK scheduler is called, it compares 

the system time with the thread wakeup time of the first thread in the waiting queue. The thread is 

added to the ready queue if the waiting time has expired. The scheduler need only check the first 

thread in the waiting queue unless that thread's wait is over. 
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3.4.2.2.5 Interrupt Handling 

Many portable RTOSes rely on a compiler-provided mechanism for interrupt handling where 

C functions can be used as interrupt routines. In this general approach, all registers are saved and 

restored while handling interrupts, increasing the overhead of intemipt-oriented context 

switching. The compiler provided by Analog Devices for its SHARC DSPs supports this 

approach, but also provides a second option of using the alternate register set for interrupt 

handUng. Since the C runtime uses only the primary register set, this option works well for most 

RTOSes, allowing speedy interrupt handling. DARK cannot use this option, however, because it 

uses both the alternate and primary register sets on this platform. 

DARK uses an alternative approach for handling external interrupts that provides 

performance comparable to this second option. Rather than placing actions directly in the 

interrupt handler itself, DARK uses a small-footprint handler that simply logs incoming events 

into an "event queue", which is managed by the DARK scheduler thread. The interrupt handler 

runs in the currently active register set and only needs to save and restore a couple of registers. It 

logs a 32-bit code representing the interrupt that was received into a circular buffer of incoming 

events, then returns control to the dispatcher. This queue of events is translated into messages 

sent on data channels to the apphcation inside the dispatcher when it checks for actions_- 

pending. After that the dispatcher selects the highest priority thread to run. 

In addition to the general-purpose interrupts explained above, DARK also supports clock 

interrupts and non-maskable interrupts (NMI). The clock interrupt ISR is written in assembly and 

simply increments the kernel variable current_time that is used for time management. Only a 

few registers required for incrementing a variable are saved and restored in this ISR. The NMI 

interrupt is used for emergency condition notification and requires a time critical response. In 

most cases, it results in a call to the application's emergency shutdown procedure, bypassing all 

other DARK and application code. 

3.4.2.2.6 Mutual Exclusion 

The most common approach to supporting inter-process synchronization in an RTOS is to 

provide semaphores. Other mechanisms that are often supported include event notification 

mechanisms and message queues. Though semaphores are powerful and are provided by most 

RTOSes, they can lead to a heavy cost in terms of performance. Another approach for mutual 

exclusion adopted by RTOSes is to disable interrupts when entering a critical section and re- 
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enable them on exiting the section. This option is unsuitable for large critical sections because of 

the increasing probability of missing important interrupts. 

Fortunately, the unique aspects of dataflow processes ensure that most mutual exclusion 

problems do not arise in DARK. Threads share no resources or memory and communicate only 

through the data channels. The only conflicts that can arise are when two ECOs attempt to access 

the same data channel, or when an ECO and the scheduler thread both attempt to access an 

internal OS data structure. In effect, this means that all potential conflicts occur only when a 

thread is making an OS API call. The in_OS_call field of the thread's TCB is used as a 

simple flag to indicate when an application thread is in the process of making such a call. This 

field is only written by the ECO and only read by the scheduler thread. Since the scheduler is 

always called at the conclusion of each OS operation, if it is ready to perform a context switch on 

a running thread where in_OS_call is set, it can simply resume the thread—which will then 

finish the call, and promptly return control to the scheduler so it can be switched out. This forms 

a crude form of "safe points" for context switching. Otherwise, no mutual exclusion mechanisms 

are needed to manage dataflow applications. Note that interrupt handling can happen at any time, 

since there can be no conflicts between the interrupt handlers and application code. 

3.4.2.2.7 Real-time Support 

DARK provides options to users to selectively include real-time features in the kernel. The 

optimal fixed priority algorithm is shown to be the rate monotonic priority assignment (RMA) in 

which a task with a shorter period is given higher priority than a task with a longer period [vii]. 

The deadline driven scheduling algorithm is an optimal dynamic scheduling algorithm [vii]. But 

the dynamic real-time scheduling algorithms carry a lot of overhead, which may affect the system 

performance in a negative way. In case of deadline driven scheduhng algorithm, the deadlines are 

monitored at each clock tick to assign the highest priority to the task with nearest deadline. 

DARK provides support for using the fixed priority real-time scheduling algorithms. Along 

with the DFG definition, the user is given option to specify a statically scheduling algorithm 

through a fiinction handle. If the function handle is assigned null, the default scheduling provided 

by DARK is used. DARK provides an implementation of the fixed priority RMA that can be 

optionally used by the application designer to assign priorities according to the rate monotonic 

approach. RMA uses the information in the DFG to calculate the priorities and exits without 

starting the application if a feasible schedule cannot be found. 
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In addition to this, DARK provides a simple API to applications for monitoring their real- 

time deadlines. In the interest of DARK's high-performance objective, the complex real-time 

support necessary for POSK compliance has been avoided. Moreover, other POSK-required 

features are omitted, including naming, file systems and signals. An entity can set a deadline for 

its execution using the following API function: 

void set_deadline(int time); 

The variable time in this function specifies the time by Vi^hich the entity has to finish its 

execution. Whenever this function is called, the time is converted to an absolute time by adding 

the current system time to it. The ECO is then added to a deadline queue similar to the waiting 

queue. Later, the ECO calls check_deadline () to ascertain its adherence to the deadline. 

This function removes the associated entry from the deadline queue and returns true if the ECO 

met its deadline. In addition to this, the DARK scheduler also checks the first entry of the 

deadhne queue on each invocation. If it finds an entity that missed its deadline, it calls a user- 

provided handler. 

The kernel also provides an option in OS_cf g. h to monitor the switching cycle deadlines, 

which are important for dataflow applications. One switching cycle consists of sensing and 

updating all of the necessary components in the power stage being controlled. When this option is 

enabled, the set_deadline is called at the beginning of each switching cycle, whereas 

check_deadline is invoked at the end of each switching cycle. If a switching cycle exceeds 

its deadline, a user provided handler is called that may cause an emergency shutdown. 

3.4.2.3   DARK-Configurable Options 

Four distinct versions of the DARK kernel can be obtained by selectively removing certain 

kernel features. Removal of the features leads to an increase in performance together with a 

concomitant reduction in run-time flexibihty. The application designer can select the most 

appropriate DARK version for a given application's requirements. Table 3-1 lists the features in 

different versions. In addition to this, the data-channels can also be configured according to the 

needs of the applications. 

The "full-featured" version of DARK, with nothing disabled, is a multi-threaded preemptive 

kernel. Threads are dynamically scheduled based on their firing rules and priorities. After every 

read and write operation, the scheduler is invoked to check for higher priority threads. A context 

switch takes place if a higher priority thread is ready. The kernel also ensures fair scheduling 
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between equal-priority threads. Please note that the fair scheduling here does not mean fair CPU- 

time slicing. It means that the DARK scheduler selects the next thread of equal priority and 

suspends the current thread whenever it is invoked. 

The "non-preemptive" version of DARK does not invoke the scheduler on every OS call. 

Instead, each thread runs until it suspends itself—typically because it is waiting for more 

incoming data. Thus, the overhead of calling the scheduler after every read and write operation is 

avoided by sacrificing immediate response to higher-priority threads. 

The remaining two versions of DARK are single threaded. They avoid the time spent in 

context switching, thereby giving a performance boost to the application. Such an approach may 

be imsuitable for an application with dynamic behavior, but may be ideal for monotonic 

applications that execute sequentially. The dynamically scheduled, single-threaded version of 

DARK continues to use firing rules and priorities to select which process is ready for execution. 

The statically scheduled, single-threaded version of DARK is fastest; it uses a precomputed firing 

order for threads, eliminating all use of priorities and firing rules. 

DARK also provides a configurable option for data-channels. The data-channels in a dataflow 

application can be synchronous or asynchronous. Synchronous channels never conta.in more than 

one data item throughout the application execution. In other words, whenever a data item is 

written, the sink ECO consumes it before any subsequent write into the channel. Asynchronous 

data channels can contain multiple data items. Many dataflow applications use synchronous 

channels. The kernel provides a mailbox option, which can be used with any of the four DARK 

versions listed above with no change to the application code. The mailboxes avoid the costly 

queue maintenance operations and thus, provide a better performance. 

In addition to these options, DARK also provides options for adding real-time features as 

discussed in the previous section. The user can select a fixed priority real-time scheduling 

algorithm such as RMA using a handler in the DFG. h file. The option of monitoring deadlines 

for each switching cycle can also be selected by the application designer. 

Table 3-1 Configuration options available in DARK. 

Versions 
Features                               | 

Preemptive Multithreade 
d 

Dynamic 
scheduling 

Full-featured DARK X X X 
Non-preemptive DARK X X 
Dynamically-scheduled single-threaded DARK X 
Statically-scheduled single-threaded DARK 
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3.4.3 Kernel Evaluation 

In this subsection, we discuss the results obtained during the performance evaluation 

experiments of DARK. The experiments were conducted using an Analog Devices-SHARC 

21160 80 MHz microprocessor. The Analog Devices VisualDSP++ 2.0 emulator was used to run 

the experiments and collect the data. 

As described before, DARK can be used in any of the four modes using the configurable 

options. The experiments in this chapter exhibit the relative decrease in the kernel overhead 

through reducing the kernel features. The results show that the user can reduce the kernel 

overhead by more than 80% by the removal of features. 

We have compared the performance of DARK with two kemels-MicroC/OS-H [viii] and 

Analog Devices VDK++ [ix]. MicroC/OS-II is a simple high-performance kernel written in C, 

which imposes certain limitations on the applications to increase the speed. VDK++ is a special 

kernel designed by Analog Devices to support their microprocessors. VDK-H- is written in C++ 

and it was not found suitable for running high-performance applications after our experiments. 

The resuhs of the performance comparison indicate that the DARK with all features enabled is 

more than 80% faster than Analog Devices' VDK++. The non-preemptive version of DARK is 

found to be more than 11% faster than the non-preemptive MicroC/OS-II. The main features of 

the kernels are compared with DARK in Table 3-2. 

Table 3-2 Comparison of major properties of the kernels 

Properties Kernels                                            j 
Full-featured DARK MicroC/OS-II VDK++ 

Implementation Language C C C++ 
Preemptive Yes Yes Yes 
Multitasking Yes Yes Yes 
Upper limit on number of user tasks None 56 None 
Inter-task communication support Yes Yes No 
Call to scheduler After API call After API call After API call 
Mutual exclusion for interrupt handlers NOT required Required Required 
GUI for task initialization None None Yes 
Reconfigurability Yes None Limited 

3.4.3.1   Overview of Applications 

The dataflow applications for power electronics controllers discussed in the previous chapter 

are used in conducting the performance evaluation experiments. All the three applications are 

developed as a part of PEBB project at Center for Power Electronics Systems, Virginia Tech. 

This Section contains an overview of the relative load that the applications impose on the kemel. 
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The Table 3-3 summarizes the key categories of Kernel API calls made by the three test 

applications. The numbers shown represent how many times each type of operation is performed 

in one switching cycle of the application. One switching cycle consists of sensing and updating 

all of the necessary components in the power stage being controlled. For the test applications 

discussed here, that amounts to executing each ECO in the application exactly once. 

Table 3-3 Kernel operations per switching cycle. 

Operations Open loop inverter Closed loop inverter Boost rectifier 

Read from data channel 9 20 29 

Write to data channel 9 20 29 
App-App context switches 6 8 17 
App-kemel context switches 14 18 36 

Ready queue insertions 7 9 18 
Ready queue deletions 7 9 18 
The dataflow graphs for these applications are given in 3.3. The dataflow application for open 

loop inverter is the simplest containing only seven ECOs and nine data channels. The closed loop 

inverter consists of nine ECOs and twenty data channels. This application contains one current 

loop, which is completed by the hardware sensors that take the output results from the PEBB 

drivers and control the application via interrupt driven data channels. The boost rectifier 

application contains two loops—current loop and voUage loop, which again are controlled by the 

external hardware sensors. These loops are called feedback loops as they give a feedback to the 

applications based on their pervious outputs. The dataflow application for the boost rectifier 

contains eighteen ECOs and twenty-nine data channels. 

3.4.3.2   DARK Versions 

DARK provides options for selectively removing the features for gaining performance. In this 

section, we will compare the relative performance gains as features are removed. Experiments 

were conducted on all of the eight DARK options possible—Preemptive (Full-featured) DARK, 

Non-preemptive DARK, Dynamically scheduled single threaded DARK and Statically scheduled 

single threaded DARK, with or without the mailbox option. The mailbox option, which is suitable 

for synchronous communication, provides the best performance. 

Table 3-4 shows the performance comparison figures obtained when message queues are 

used whereas the figures for the mailboxes are provided in Table 3-5. As shown, the fiiU-featured 

version of DARK takes 4203 instruction cycles to complete one switching cycle of the 

application, whereas the minimal featured version with mailboxes takes only 514 instruction 
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cycles. A significant performance gain is achieved by removing the multi-threaded feature, as the 

overhead for context switching diminishes drastically. In addition, static scheduling also leads to 

performance gain, because the ready queue and firing rule related operations are completely 

eliminated. The mailbox option eradicates the queue maintenance operations, because of which it 

is faster than the versions with message queues. The Fig. 3-15 shows a graphical representation of 

the reduction in kernel overhead, both in message queues and mailboxes versions. 

Table 3-6 and Table 3-7, and Fig. 3-16 show the similar comparison resuhs for the closed 

loop application. The fiiU-featured DARK takes 6603 instruction cycles for completing one 

switching cycle of the application while the minimal featured version takes 1073 instruction 

cycles. 

At the end, we have provided the results obtained when the boost rectifier appUcation was 

used to run the experiments. The data in the Table 3-8 and Table 3-9 show that the fiall-featured 

DARK takes 12371 instruction cycles for executing one switching cycle of the application 

whereas the minimal-featured version takes only 1561 instruction cycles. The reduction in kernel 

overhead by removing features is shown in Fig. 3-17. 

Table 3-4 Performance of DARK versions for the open loop application with message 

queues 

Operations 
Execution time for one switching cycle (Instruction cycles)                           | 

Full-featured Non-preemptive 
Single-threaded 

dynamically scheduled 
Single-threaded 

statically scheduled 

ECO execution 235 235 235 235 

Scheduling 529 529 219 212 

Context switching 1148 1148 0 0 

Ready queue operations 525 525 525 0 

Data channel operations 1304 999 945 312 

Other OS operations 462 460 77 0 

TOTAL 4203 3896 2001 759 

Table 3-5 Performance of DARK versions for the open loop application with mailboxes 

Operations 
Execution time for one switching cycle (Instruction cycles)                           | 

Full-featured Non-preemptive 
Single-threaded 

dynamically scheduled 
Single-threaded 

statically scheduled 

ECO execution 235 235 235 235 

Scheduling 529 529 219 212 

Context switching 1148 1148 0 0 

Ready queue operations 525 525 525 0 

Data channel operations 1040 734 734 67 

Other OS operations 462 450 121 0 

TOTAL 3939 3621 1834 514 
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Fig. 3-15 Performance of DARK versions for the Open-loop Inverter application. 

Table 3-6 Performance of DARK versions for the closed loop application with message 

queues 

Operations 
Execution time for one switching cycle (Instruction cycles) 

Full-featured Non-preemptive 
Single-threaded 

dynamically scheduled 
Single-threaded 

statically scheduled 

ECO execution 583 583 583 583 

Scheduling 679 679 297 270 

Context switching 1476 1476 0 0 

Ready queue operations 612 612 612 0 

Data channel operations 2659 2059 2059 731 

Other OS operations 594 594 203 0 

TOTAL 6603 6003 3754 1584 

Table 3-7 Performance of DARK versions for the closed loop application with 

mailboxes 

Operations 
Execution time for one switching cycle (Instruction cycles)                           | 

Full-featured Non-preemptive 
Single-threaded 

dynamically scheduled 
Single-threaded 

statically scheduled 

ECO execution 583 583 583 583 

Scheduling 679 679 297 270 

Context switching 1476 1476 0 0 

Ready queue operations 612 612 612 0 

Data channel operations 2271 1698 1698 220 

Other OS operations 594 594 181 0 

TOTAL 6215 5642 3371 1073 
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Table 3-8 Performance of DARK versions for the boost rectifier application with 

message queues 

Operations 
Execution time for one switching cycle (Instruction cycles) 

Full-featured Non-preemptive 
Single-threaded 

dynamically scheduled 
Single-threaded 

statically scheduled 

ECO execution 778 778 778 778 

Scheduling 1354 1354 585 567 

Context switching 2952 2952 0 0 

Ready queue operations 1811 1811 1811 0 

Data channel operations 4252 3174 3174 1020 

Other OS operations 1224 1224 205 0 

Table 3-9 Performance of DARK versions for the boost rectifier application with 

mailboxes 

Operations 
Execution time for one switching cycle (Instruction cycles) 

Full-featured Non-preemptive 
Single-threaded 

dynamically scheduled 
Single-threaded 

statically scheduled 

ECO execution 778 778 778 778 

Scheduling 1354 1354 585 567 

Context switching 2952 2952 0 0 

Ready queue operations 1811 1811 1811 0 

Data channel operations 3699 2640 2640 216 

other OS operations 1224 1224 88 0 

TOTAL 11818 10759 5902 1561 
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Fig. 3-17 Performance of DARK versions for the Boost Rectifier application 

3.4.3.3   DARK vs. MicroC/OS-II 

In this section we present the results obtained by the performance comparison of Full- 

featured DARK with Non-preemptive MicroC/OS-II [viii]. MicroC/OS-II is a preemptive multi- 

tasking kernel written by Jean J. Labrosse in C. It schedules tasks based on their priorities and 

does not provide any special support for dataflow applications. MicroC/OS-II provides API for 

inter-task communication using message queues. For experimentation purposes, the support for 

firing rules was added for dynamic scheduling of dataflow applications. Semaphores were used to 

avoid race conditions related to message queues, which are shared data structures. 

MicroC/OS-n makes many simplifying decisions in order to provide high-performance. The 

number of user tasks or threads is limited to 56 and every task should have different priority. This 

enables the kernel to completely eliminate the costly ready queue operations. MicroC/OS-II uses 

bit tables for faster scheduling of tasks. On the negative side, it makes the fair scheduling of tasks 

impossible, as same priorities cannot be assigned to multiple tasks. The limit on number of tasks 

is also a concerning factor for dataflow applications because they often have more tasks than 

regular applications for increasing the reusability and modularity. In DARK, the number of 

threads is limited by the system memory and multiple threads can have the same priority, which 

enables fair scheduling. 
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Table 3-10 Performance of DARK versions for the boost rectifier application with 

message queues 

Operations 
Execution time for one switching cycle (Instruction cycles)                         | 

Full-featured Non-preemptive 
Single-threaded 

dynamically scheduled 
Single-threaded 

statically scheduled 

ECO execution 778 778 778 778 

Scheduling 1354 1354 585 567 

Context switching 2952 2952 0 0 

Ready queue operations 1811 1811 1811 0 

Data channel operations 4252 3174 3174 1020 

Other OS operations 1224 1224 205 0 

TOTAL 12371 11293 6553 2365 

Table 3-11 Performance of DARK versions for the boost rectifier application with 

mailboxes 

Operations 
Execution time for one switching cycle (Instruction cycles)                           | 

Full-featured Non-preemptive 
Single-threaded 

dynamically scheduled 
Single-threaded 

statically scheduled 

ECO execution 778 778 778 778 

Scheduling 1354 1354 585 567 

Context switching 2952 2952 0 0 

Ready queue operations 1811 1811 1811 0 

Data channel operations 3699 2640 2640 216 

Other OS operations 1224 1224 88 0- 

TOTAL 
11818 10759 5902 1561 
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Fig. 3-18 Performance comparison between Full-featured DARK with message 

queues and MicroC/OS-ll. 

Unlike DARK, MicroC/OS-II does not have typed data channels. The data channels of 

MicroC/OS-II support only void pointers, thus reducing the type safety. This also increases the 
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possibility of memory leaks and dangling pointers. Moreover, MicroC/OS-II does not provide any 

special scheduling for dataflow applications based on the data in their incoming data channels. 

This increases the burden on the application designers who in turn are forced to use an invariant 

of static scheduling for their applications. 

At last, the preemptive scheduling approach adopted in MicroC/OS-II is an unnecessary 

overhead for dataflow applications. In a dataflow apphcation, a thread becomes ready only after 

some specific API functions such as read or write to data-channel or after interrupts. So, it is not 

necessary to check for higher-priority threads at each clock tick as is done in MicroC/OS-II. 

Instead this process should occur only after possible operations that can make a dataflow thread 

ready, which is the approach adopted in DARK. So, the preemptive scheduling approach adopted 

in DARK is more effective and has lesser overhead than MicroC/OS-II, as it is designed specially 

for dataflow apphcations. 

The Table 3-12 and Fig. 3-18 show the results obtained in the performance comparison of 

Non-preemptive DARK with message queues and Non-preemptive MicroC/OS-II. 

Table 3-12 Performance comparison between Full-featured DARK with message 

queues and MicroC/OS-II 

Operations 

Open loop Closed loop Boost Rectifier 

Non- 
Preemptive 

DARK 
MicroC/OS- 

II 

Non- 
Preemptive 

DARK 
MicroC/OS- 

II 

Non- 
Preemptive 

DARK 
MicroC/OS- 

II 

ECO execution 235 235 583 583 778 778 

Scheduling 529 882 679 1013 1354 2467 

Context switching 1148 1575 1476 2098 2952 4253 

Ready queue operations 525 0 612 '    0 1811 0 

Data channel operations 999 1684 2059 3674 3174 5958 

Other OS operations 460 0 594 0 1224 0 

TOTAL 3896 4376 6003 7368 11293 13456 

3.4.3.4   DARK vs. Analog Devices-VDK-H- 

VDK++ [ix] is a preemptive multi-tasking kernel written in C++. It is provided by Analog 

Devices as a component of its VisualDSP++ IDE for developing apphcations for its DSPs. 

VDK++ provides users the options of selecting the scheduling policy. It supports cooperative 

scheduling and round robin scheduhng in addition to preemptive scheduling. The associated 

overhead because of object-oriented features makes VDK++ unsuitable for high-performance 

applications. 
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The scheduling adopted in VDK++ is similar to DARK. The scheduler is called after an API 

call to the kernel, which can make a higher priority thread ready. VDK++ does not provide any 

support for inter-task communication, which is an integral part of any kernel. For performing the 

experiments, we added data channel support to VDK++ similar to DARK. While accessing the 

data-channels, we had to use semaphores in VDK-H- to avoid shared data problems. For dynamic 

scheduling of the dataflow applications, the event signal API provided by the VDK++ kernel was 

used in read and write operations. 

VDK-H- provides a user interface for the programmers through which the properties of the 

kernel can be changed. The user interface is also used to add or remove events, semaphores, 

threads, etc. This makes the kernel easy to use but on the hand, also increases the inflexibihty of 

the kernel. It is a drawback for the dataflow applications, which rely heavily on reusability of 

individual ECOs because the firing rules of existing ECOs cannot be used in a new application. 

The user needs to create a separate set of events for each project or application. Also, as the 

kernel files are generated automatically by the kernel for every project, modifying VDK-l-l- to 

make it suitable for dataflow applications is very difficult and expensive. Moreover, the kernel 

operations in VDK+-I- are very heavyweight and are unsuitable for applications that require high- 

performance. We conclude that VDK-f-)- is suitable for those applications that have independent 

threads and where the speed of execution or the kernel overhead is not a big constraint. Table 

3-13 and Fig. 3-19 show the results obtained in the comparison of FuU-feamred DARK with 

VDK-I-I-. As seen in the figures, the use of expensive VDK-l-l-- semaphore and event operations in 

data channel reads and writes increases the cost by a tremendous amount of instruction cycles. 

Table 3-13 Performance comparison between Full-featured DARK with message 

queues and Analog Devices- VDK++ 

Operations 
Op( ;n loop Closed loop Boost Rectifier          | 

Full- 
featured 
DARK VDK++ 

Full- 
featured 
DARK VDK-H- 

Full- 
featured 
DARK VDK-H- 

ECO execution 235 235 583 583 778 778 

Scheduling 529 2243 679 3046 1354 5564 

Context switching 1148 1659 1476 2312 2952 4278 

Ready queue operations 525 0 612 0 1811 0 

Data channel operations 1304 14850 2659 33000 4252 47850 

Other OS operations 462 2551 594 4093 1224 7461 

rOTAL 4203 21538 6603 43034 12371 65931 
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Fig. 3-19 Performance comparison between Full-featured DARK with message 

queues and Analog Devices-VDK++ 

3.4.3.5   Summary of Results 

In this section, we have summarized the results obtained in all the experiments. The Fig. 

3-20, Fig. 3-21, and Fig. 3-22 present the summaries for Open-loop, Closed-loop and Boost 

Rectifier applications, respectively. As shown in the figures, the configurable options of DARK 

present opportunities to application designers for selecting a tailored version that meets the 

performance requirements. The figures use the same legend as used in previous figures. 
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Fig. 3-22 Summary for results obtained wliile using Boost Rectifier application 

3.5 DARK++ 

It is worth discussing the advantages that object-oriented programming offers that warrant its 

use. We discuss below, some important points in this regard: 

• Compiler-enforced encapsulation in C++ offers more protection due to the notion of 

classes and different access levels for the various data members and behaviors - this 

applies to all OO systems in general, and therefore to our system as well. 

• C++ offers more type safety with more static type checking - this is true of components 

that can be implemented by inheritance from a generic base class with parameterized sub- 

classes for different data types, as opposed to having a generic module that is used for all 

data types with appropriate typecasting as is done in non-00 implementations generally. 

Typecasting makes the system more error-prone. 

• OO systems are more naturally extendible by inheritance and overriding of base class 

methods in subclasses. 
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In our system, we found that with respect to the classically cited advantages of OO 

programming, viz., modularity, reusability and maintainability, our system is comparable to the 

non-00 system and does not offer any special gains because the non-00 system also has a well- 

defined structure with a standardized and reusable library of components. 

3.5.1 DARK++ design overview 

The DARK-H- kernel has been designed and implemented as a platform to run PEBB 

systems, which are based on dataflow. The overall goal of PEBB-oriented research is to achieve 

modularization, standardization and reusability of power electronics components. The goal of 

DARK++ is to support this same modularity, standardization and reusability within the control 

software. Since the 00 paradigm offers the advantages of software modularity and reusability, it 

is a natural fit with PEBB research. The DARK++ system comprises a library of ECOs that can 

be modified or extended very easily by using the classes and templates provided. 

Due to the advantages of using 00 programming for supporting PEBB systems, it is worth 

exploring its feasibility. Since we are dealing with real-time embedded systems, efficiency is a 

very important concern. We need to consider both the efficiency requirements in the given 

scenario, and also the efficiency issues that we need to overcome due to the use of OO 

programming. 

Dataflow applications are comprised of processes that are essentially data driven. This 

necessitates causal ordering of the processes, which is done by the scheduler. However, for a real- 

time system, processes also have to be temporally ordered since every process has to meet its 

real-time deadline. In such a scenario, the overhead that the OS causes plays a crucial role. 

Moreover, dataflow applications typically comprise a larger number of smaller processes as a 

result of striving for modular, independent and reusable components. The natural consequence of 

a large number of processes is: 

• high overhead in scheduling and context switching 

• high frequency of inter-component communication 

Over and above these efficiency issues, the 00 paradigm introduces additional performance 

issues. The main sources for concern over extra run-time overhead are: 

• Heap-allocated memory, due to the extensive dynamic creation of objects 

• Dynamic binding, due to the use of virtual methods 
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•    Method call overhead, due to a large number of small methods in classes 

5.5.2 Kernel Architecture 

This chapter describes the design of DARK-H-. It provides insight into the features an 

application designer needs to understand in order to write ECOs and use DARK++ for an 

application. It also discusses the rationale behind the most critical design decisions. This chapter 

presents the most important classes in the DARK++ system, including their responsibihties, 

interactions and the interfaces they provide. The following section is a discussion of the features 

of dataflow applications and the requirements that the dataflow model imposes on the kernel. 

3.5.2.1   DARK++ 

DARK++ is a high-performance object-oriented kemel that addresses the requirements 

imposed by dataflow. It aims to reduce the overhead due to the use of OO programming. 

DARK++ is a preemptive, muhi-threaded kemel. It always runs the highest priority thread that is 

ready. An executing process is preempted if a higher priority process is found to be ready when 

the currently running process makes a call to a kemel API. DARK++ implements efficient 

context switching by taking advantage of dual-register-set hardware and saving and restoring 

only the required registers as opposed to all of them whenever this is feasible. DARK++ also 

provides support for dynamic priorities, firing rules for specifying the data channel conditions 

necessary for process wakeup, and typed data channels for efficient and reliable inter-process 

communication. DARK++ is implemented in C++, with a few key elements- context switching, 

dual register set support, and interrupt handling written in assembly. Because it is intended for 

embedded power electronics control, it currently runs on Analog Devices SHARC 21xxx 32-bit 

digital signal processors. Dataflow processes, or ECOs, are implemented as C++ classes. 

DARK++ uses a statically initialized set of ECO objects, together with a statically initialized set 

of interconnecting data channel objects. 

3.5.2.1.1 DARK++Classes 

The major classes that comprise the DARK++ system are: DARKpp, ECO, 

Data_Channel and some helper classes that form kemel's internal data stmctures. The 

DARKpp class is a singleton, which means there is only one DARKpp object (the kemel object) 

in the system. It is responsible for scheduling and mnning the processes, which are represented as 

ECO objects. The ECO class is a base class from which templates for specific ECOs are derived. 
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These templates take the types of their input ports as parameters. Since there are two types of data 

channels - the queued and the mailbox, which are in turn implemented as templates derived from 

the base Data_Channel class, the input port type parameters for specific ECOs help specify 

which of the two types of data channel each port of an ECO is. This can be tailored to suit the 

specific application; i.e., the application designer can instantiate an ECO appropriately. The 

ECOs read data from their input data channels, perform necessary computation and write data to 

their output data channels. The data channels, on receiving data, fire the next process, by adding 

their sink ECO to the ready queue, which is an internal data structure that the system uses. 
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Fig. 3-23 DARK++ System Diagram. 

Fig. 3-23 gives the "big picture" of the system. It shows the most important relationships 

among the main classes and the interaction amongst the respective objects. 

3.5.2.1.2  Class DARKpp 

The DARKpp class is the kernel class. It performs scheduling of the processes and makes use 

of the ready queue and event queue data structures, which are also implemented as classes 

(Ready_Queue, Event_Queue respectively). 

The kernel, in its every iteration, checks for pending interrupts and handles them if there are 

any. It then executes the next ready process from the ready queue if this process has a priority 

greater than or equal to the currently running process. Thus, it preempts the current process if it 
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finds a new process of greater or equal priority. Preemption on encountering an equal priority 

ensures fairness by preventing a process from hogging the processor for a long period. 

The kernel uses the variable act ions jpending whenever it needs to check whether any 

timed events have to be performed/pending interrupts have to be serviced. This variable can have 

one of three values: 

■ no_act ions, which indicates that there are no pending timed events/interrupts 

■ f uture_actions, which indicates pending timed events 

■ current_act ions, which indicates pending interrupts 

Since there has to be a single kernel object in the system, a static method that returns a static 

reference to a kernel object is used. This method, get Instance (), is shown in Fig. 3-24. 

DARKpp& DARKpp:: getlnstanceQ 
{ 

static DARKpp the_kernel; 
return thc_kernel; 

} 

Fig. 3-24 The getlnstanceO method. 

3.5.2.1.3  Class ECO 

The ECO class is an abstract base class for ECOs containing the ECO implementation method 

as a virtual method, which can be defined in the particular ECO subclass, since ECOs are 

functionally distinct. The ECO objects in the system are the processes that are scheduled and 

executed by the DARKpp kernel. 

An ECO designer should take the following steps to write a class for a specific ECO: 

• Call the base ECO class constructor from the constructor of the new class with the 

following parameters: number of input and output ports, the firing rule for the ECO, the 

initial priority, an array of pointers to the input ports and an array of pointers to the output 

ports. 

• Set the specific configuration information for the ECO in the new class's constructor. 

• Write the implementation function and any other new functions if required. 

Figure 3.3 shows the ECO class interface. It includes comments that explain the role of every 

data member/method. 
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class ECO 
public: 
ImpIementationO = 0; // pure virtual function 
Wait_To_FireO;      //returns true or returns to OS 
Register_OS0; // registers with DARKpp 
Current_PriorityO;   // returns current ECO priority 
SetPriority(Priority ); // sets ECO priority 
SetIn_Ports_Ready(Firing^Mask );//set mask after write 
Timed_Wait_To_Fire(int); 
Delay(int); 
In_Ports_ReadyO;        // returns mask showing ready ports 
SetProcess_State(ProcessState); 
BlockedQ; // returns true if process is blocked 
SetWakeup_Call(Firing_Mask ); // sets the mask that fires the ECO 
Wakeup_CallO; // returns the mask that woke it up 
Process_StateO; // returns process state 
FIRE_RuleO; // returns firing rule 
Get_Heap_PositionO;   // gets process's position in ready queue heap 
Set_Heap_Position(int);// used to alter position of ECO in ready queue 
swapCProcessState);    // changes process state and goes to OS 
ECO_EnvO; // returns context information for the process 
StackO; // returns pointer to the stack in which process is running 
StackSizeO; // returns size of process stack 

protected: 
Register_As_Source(int); // register as source ECO of o/p port(s) 
Register_As_Sink(int);   // register as sink ECO of i/p ports(s) 

Fig. 3-25 ECO Class Inteiface. 

3.5.2.1.4  Class Data_Channel 

The Data_Channel class is a base class for all types of data channels. From this class, we 

have a derived Q_Scalar_Data_Channel and Mailbox_Scalar_Data_Channel 

template classes. While Q_Scalar_Data_Channel represents queued data channels, which 

can contain muhiple data items (specified in the constructor), while 

Mailbox_Scalar_Data_Channel represents mailbox data channels, which can contain a 

single data item. It is more efficient to implement mailbox data channels separately so that we can 

do away with queue arithmetic. 

Besides these, the String_Data_Channel and Byte_Data_Channel classes are 

provided. If required, specific data channels for user-defined data types may be defined as 

subclasses of the Data_Channel class by using traits. The need for a Data_Channel base 

class and template subclasses for scalar data channels, rather than a single template base class 

arises because ECO objects need to store pointers to their input and output data channels (so as to 

read/write fi-om the appropriate data channel). It would not be possible for an ECO object to 

contain an array of Data_Channel pointers if Data_Channel were defined as a template 

base class. This necessitates having a Data_Channel base class that represents any type of 

data channel. 
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As mentioned, the ECO objects store an array oipointers to Data_Channel objects rather 

than an array of Data_Channel objects. The rationale for this is that a data channel, essentially 

being an interconnection between two ECOs, forms the output data channel for one ECO and the 

input to another. Since both the source and the sink ECOs require a knowledge of the identity of 

this data channel, we would need this Data_Channel object in the output data channel array of 

the source ECO as well as in the input data channel array of the sink ECO, which is not possible. 

Therefore references to the Data_Channel objects (Data_Channel object pointers) are 

stored instead. 

Data channels may be interrupt-driven or non-interrupt-driven. While interrupt-driven data 

channels are input data channels to processes that are fired by interrupts, the non-interrupt-driven 

data channels are written to by their source processes. This information (interrupt-driven or not) 

is specified in the constructor to the data channels. 

Fig. 3-26 through Fig. 3-29 show the interfaces provided by all the data channel classes. 

class Data_Channel 

public: 
CapacityO;    // max. no. of entries 
Entries 0;     // current no. of entries 
AvailableCapacityO ; 
Flush(int ); // remove given no. of entries from end of queue 
BlockedO;     // returns true if blocked 

protected^. 
RegisterOSO; //registers with DARKpp 
setBlockedO ; 
resetBlockedO ; 
/* Readbytes pass char pointer to read, no. of bytes to be read */ 
Readbytes(char* , int ); 
/* Write bytes pass char array to be written, no. of bytes */ 
Writebytes(char* , int ); 

Fig. 3-26 Data_Channel Base Class Interface. 

template Q_Scalar_Data_Channel<Scalar_T> :: public Data_Channel, 
template Mailbox_Scalar_Data_Channel<Scalar_T> :: public Data_Channel 
public: 
Read(Scalar_T& );    // pass reference parameter of appropriate 
// type to read 
Write(ScalarT );    // pass parameter of appropriate type to 
// write 

Fig. 3-27 Scalar_Data_Channel Template Class Interface 
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class String_Data_Channel:: puUic Data_Channel 

publicx 
Read(char* );  //pass char pointer to read in string 
Write(char* ); //pass char array write 

Fig. 3-28 String_Data_Channel Class Interface. 

class Byte_Data_Channel:: public Data_Channel 

public: 
/* Read bytes follows: pass char pointer to read, no. of bytes to be 
read */ 
Readbytes(char* , int ); 

/* Write_bytes follows: pass char array to be written, no. of bytes */ 
Write bytes (char* , int ); ____^_ 

Fig. 3-29 Byte_Data_Channel Class Interface. 

3.5.2.2   Client Code 

Having discussed the important classes and the framework of the system, we now explain 

how these can be used by an application designer to run a dataflow control application. 

We consider the closed-loop three-phase inverter as an example control application and show 

how it can be run using our kernel. Following is the dataflow graph for the application. 

This application comprises 9 ECOs and 20 data channels. To run this application, the data 

channel objects first have to be declared. Following this, the ECO objects are declared with the 

association amongst them being established by providing the input and output port information in 

the constructors of the ECOs. The constructor takes the other necessary information as well, such 

as the configuration information for the ECO, the firing rule, the initial priority of the ECO and 

the size (in bytes) of stack space required to run the ECO. 

Fig. 3-6 shows the template code for a sample ECO - the Adc_Va. As we can see, it takes 

the types of the input and output ports as parameters. The implementation body is a -while 

structure that fires the ECO again if it has data in its input port. Based on which firing mask 

triggered the ECO (wakeup_call), the appropriate action is performed. These actions are also 

provided for the ECO. 



template <class Bool_Data_Channel_i, class Float_Data_Channel_o > 

void Adc_Va <class Bool_Data_ChanneI_i, class Float_Data_Channel_o> 

:: ImplenientationO{ do 
{ switch (wakeup_call) 

{ 
case ADC_VA_FIRING_MASK_DEFAULT: default_actionO; break; 

case ADC_VA_FIRING_MASK_EXCEPTION: exception_liandling(); break; 
} 

 }while fVVait To FireQ);  

Fig. 3-30 Template for ECO Adc_Va. 

void default_action0 
{ /* Input variable */ 
boot start; 

/* Output variable */ 
float va; 

int Adc_offset; 
float Adc_scale; 
float Va_offset; 
float Va_scale; 

/* Intermediate variable */ 
int Adc_value; 

Adc_offset = confg.Adc_offset; 
Adc_scale = confg.Adc_scale; 
Va_offset = confg.Va_offset; 
Va_scale = confg.Va_scale; 

/* Read input from data channel */ 
Adc_Va_Start->Read(start); 

Adc_value = *(int *)confg.Data_buffer; 
Adc_value — Adc_offset; 

va = (float)(Adc_value) * Adc_scale; 

va = (va-Va_offset) * Va_scale; 

va = 60.0; 

/* Update output data channel */ 
Adc_Va_Va->Write(va); 

_L 
Fig. 3-31 Default action for ECO Adc_Va 

3.5.2.3   DARK++ Kernel Features 

3.5.2.3.1   Thread Management 

An ECO can be viewed as a process that executes its Implementation code provided by 

the ECO designer. The various possible states of these processes are: ready, run, blocked, 
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waitjbrjire, timedjwait, timedwaitjbrjlre and dead. When the kernel starts, each thread is in 

the waitjbrjire state. A process is in ready state once its required input data channels have data 

tokens in them. The ready process of the highest priority is run by the kernel and such a process 

(an executing process) is in the run state. The process is blocked when it tries to write to a full 

data channel. 

After every read operation on a data channel, the status of the source ECO (ECO that writes 

to this data channel) is checked. If the source ECO is found to be blocked, then it is unblocked. 

Similarly, after every write operation, the mask of its sink ECO (ECO that reads from this data 

channel) is updated; i.e., the bit corresponding to the data channel in question is set. Thus, while a 

read operation could unblock a process blocked on a data-channel, a write operation could fire it. 

On receiving 
data on i/p ports 

Fig. 3-32 Thread state diagram 

The wait_to_f ire fimction can be used to fire the ECO again. If the ECO is not ready for 

firing, it goes into the waitjorjire state. The user can also delay the execution of the ECO for a 

pre-determined time, which puts the ECO into timed_wait state. The timed_waitJorJire state is 

a combination of waitJorjire and timed_wait. An ECO in this state can be fired if a firing mask 

becomes true or if the time period elapses. The ECO goes into the dead state once it finishes 

execution. 

3.5.2.3.2  Context Switching 

Operating systems can have one of two types of schedulers: 

•    Active Scheduler 
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•    Passive Scheduler 

An active scheduler runs as a separate thread and therefore necessitates a context save and 

restore (of the status of all the registers) every time there is a transfer of control between the 

scheduler and a process. A passive scheduler, on the other hand, does not run as a separate thread 

and is called by the process threads (through normal function calls). Although the passive 

scheduler approach obviates the need for explicit context save and restore, thus making it faster, 

this approach does not allow for preemption because if there has been a transfer of control from a 

process to the scheduler through a function call, the scheduler cannot suspend the currently 

running thread if need be, to run a new higher priority process. Control simply has to go back to 

the process thread from the scheduler. DARK++ therefore uses the active scheduler approach, in 

which context switches are brought about by the use of calls to the set jmp and longjmp 

functions. In the normal set jmp and longjmp calls, the context is entirely saved and restored, 

respectively. This means the contents of all the registers in the processor are saved during a 

setjmp and restored during a longjmp. However, DARK++ exploits the dual-register-set 

hardware provided by the Analog Devices SHARC 21160 micorprocessor for a substantially 

more efficient context switching. This approach is detailed in the following subsection. 

Many digital signal processors used in embedded control systems, ADSP 21160 being one, 

have two sets of registers for increased performance - the primary set and the alternate set. 

DARK++ uses the primary register set for the kemel and the alternate register set for the process 

threads. Due to the use of two independent sets of registers for the kemel and the process threads, 

all that is required during a transfer of control between the two is flipping of a bit in a control 

register, which denotes the current mode (indicating whether the currently running thread uses 

primary set/secondary set), and saving/restoring some key status registers. DARK++ uses 

customized setjmp and longjmp assembly language procedures that selectively save/restore just 

these required registers. 

Since most context switches in dataflow applications occur between the scheduler and 

executing threads, minimizing the cost of such switches increases the performance significantly. 

The use of the dual-register-set architecture in DARK++ for high-speed context switching 

between the scheduler and application threads has been found to reduce the switching time by 

80% [vi]. 
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3.5.2.3.3 Time Management 

DAEK++ provides APIs to allow ECOs to request a timed delay. In most other RTOSes, the 

kernel checks each waiting thread at every clock tick, and adds it to the ready queue when the 

waiting period has expired. However, this technique can introduce unnecessary overhead if there 

are a number of waiting threads. Hence DARK++ uses a different approach to handle timed 

delays. When the timed_wait () or timed_wait_f or_f ire {) method is called, the delay 

is converted into an absolute time by adding the current system time to it and then stored in the 

ECO (process) object. The thread is then added to the waiting queue in which the threads are 

arranged in ascending order by absolute time and actions_pending is set to 

future_actions. 

The kernel checks for actions_pending and adds the process back to the ready queue 

when the deadline has expired. To check whether the deadline has been reached, it compares the 

system time with the thread wakeup time of the first thread in the waiting queue. The scheduler 

needs to check only the first thread in the waiting queue unless that thread's waiting period has 

elapsed. 

3.5.2.3.4 Interrupt Handling 

There are many RTOSes that support interrupt handling through the use of compiler-provided 

mechanisms, using C functions that can be used as interrupt routines. This method involves a 

substantial overhead in context switching, since all registers are saved and restored while 

handling interrupts. The C compiler provided by Analog Devices for its SHARC DSPs supports 

this approach, and in addition, also provides the option of using the alternate register set for 

interrupt handling (since the C runtime uses only the primary register set). However, DARK++ 

caimot use this option, since it uses both the alternate and primary register sets. 

DARK++ uses an alternative approach for handling external interrupts. This method provides 

performance comparable to that of using the alternate register set for interrupt handling. Here, 

rather than placing actions directly in the interrupt handler itself, DARK++ uses a minimal 

footprint handler that simply logs incoming events into the event queue, which is managed by the 

DARK++ scheduler. The interrupt handler runs in the currently active register set and only needs 

to save and restore a couple of registers. It logs a 32-bit code representing the interrupt that was 

received, into the event queue (a circular buffer of incoming events) and then returns control to 

the kernel. The status of the event queue is reflected by the actions_pending variable that 

we have already explained. 
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DARK++ also supports clock interrupts and non-maskable interrupts (NMI). The clock 

interrupt ISR is written in assembly and simply increments the kernel data member, 

current_time that is used for time management. Only a few registers required for 

incrementing a variable are saved and restored in this ISR. NMI is used for emergency condition 

notification and requires a time critical response. In most cases, it results in a call to the 

application's emergency shutdown procedure, bypassing all other kernel as well as application 

code. 

3.5.2.3.5 Mutual Exclusion 

Since threads have no shared memory and communicate only through data chaimels, most 

mutual exclusion problems do not arise in DARK-H-. However, there is one condition that needs 

to be handled. If interrupts occur when a process is executing, then control goes to the kernel. 

Under such a circumstance, it is important to ensure that the kernel resumes and completes the 

execution of the process thread that was suspended due to the interrupt, as soon as it executes the 

interrupt handler. This is because the event associated with the interrupt might have caused a 

higher priority process to be triggered. If this higher priority process is allowed to preempt the 

suspended process, then there is a possibility for data to be corrupted if the two processes access a 

common data chaimel. In such a scenario, however, the interrupt handler writes a 32-bit code into 

the event queue and control returns to the interrupted thread so that the event associated with the 

interrupt actually gets executed only after control returns to the kernel thread. 

3.5.2.3.6 Volatile Declarations 

In the embedded system context, it is imperative to have an efficient and optimized 

executable. With the optimizer enabled, typically several variables are cached in registers to make 

data fetches more efficient. 

DARK+4- uses the dual-register-set hardware for efficient context switching. This means that 

the kernel and the process threads work with distinct registers. Consequently, the two threads use 

different registers to cache the same data and this could lead to inconsistencies. It should be noted 

here that if all methods that manipulate data members private to their class were called through 

normal method call, then this problem does not arise, as these data members would not be cached 

in their callers. However, in the interest of our high performance objective, methods are all 

inlined, and this causes even the private data to be cached in registers, as part of the caller's 

thread. Therefore it is critical to identify all data that can potentially be accessed by both the 
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kernel and the processes threads, and declare them volatile to ensure that they always get 

accessed from the memory instead of from registers. 

The front and rear data members of the Data_Channel class, and the 

in_ports_ready, wakeup_caH and process_state data members of the ECO class 

are declared volatile since these are accessed in the Read/Write operations, which can potentially 

be called from the kernel thread and the process thread. 

In the context of mtemipt service routines (ISRs), an important fact to consider is that 

interrupts could occur at anytime during the execution of the kernel/process thread and so if the 

ISR shares any data with either of these threads, then such data has to be declaredvolatile in order 

to avoid the executing thread from using an incorrect value that was cached in a register prior to 

the occurrence of the interrupt, after control returns back from the ISR. The 

actions_pending variable is declared volatile for this reason. 

3.5.2.3.7 DARK++ Configurable Options 

The DARK++ kernel can be configured to yield four distinct versions. These are obtained by 

selectively retaining/removing certain kernel features. Removal of features leads to an increase in 

performance with a concomitant reduction in run-time flexibility. The application designer can 

select the most appropriate DARK++ version for a given application's requirements. These are 

compile-time configurable by preprocessor macros. Table 1 lists the features in different versions. 

The full-featured version of DARK++ has nothing disabled, and is a muhi-threaded 

preemptive kernel. This version of the kernel schedules threads dynamically based on their firing 

rules and priorities. After every OS call {read and write operations), the scheduler is invoked to 

check for higher- and equal-priority threads. A context- switch takes place if and only if a higher- 

or equal- priority thread is ready. Preemption by an equal-priority thread ensures fair scheduling. 

This version is enabled by the preprocessor directive PREEMPT I VE_MTHREADED. It should be 

noted here that DARK++ offers preemption in a restricted sense, rather than the more common 

"textbook" sense, wherein preemption means stopping an executing thread as soon as a higher 

priority thread becomes ready. Here preemption happens only during API calls. However, the 

dataflow paradigm rules out the possibility of a higher priority process becoming ready while the 

current process is executing. This is because a process can become ready only when its source 

process has written data to its input data channel, but the source process thread could not have 

been running in conjunction with the currently executing thread. 
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The non-preemptive version of DARK++ does not invoke the scheduler on every OS call but 

instead, runs each thread until the thread suspends itself waiting for input data. Thus we avoid the 

overhead of caUing the scheduler after every read and write operation by sacrificing immediate 

response to higher-priority threads. This version is enabled by the preprocessor directive 

NONPREEMPTIVE_MTHREADED. 

The other two versions of DARK++ are single-threaded and avoid the time spent in context 

switching, thereby giving a significant performance boost to the application. The single-threaded 

approach is ideal for monotonic applications that execute sequentially, but unsuitable for 

applications that are highly dynamic. While the dynamically scheduled single-threaded version of 

DARK++ uses firing rules and priorities to select a process for execution, the statically scheduled 

single-threaded version uses a pre-computed firing order for threads, ehminating all use of 

priorities and firing rules, and is therefore the fastest. The single-threaded dynamically scheduled 

version is enabled by the preprocessor directive SINGLETHREAD_DYNSCHD and the single- 

threaded statically scheduled version is selected by SINGLETHREAD_STATSCHD. 

These directives in turn use three other directives to control the features of the kernel - 

enable/disable preemption, enable/disable multithreading, and enable/disable dynamic 

scheduling. These are PREEMPTIVE, MTHREADED and DYNSCHD respectively. As mentioned, 

data Channels are of two types - message queues and mailboxes. A mailbox is an inter-processor 

data channel and is nothing but a special case of message queue where the size of the queue is 

one. This obviates the need for queue arithmetic and is therefore more efficient. 

Multithreaded/ 
Single-threaded 

Kernel Version Preemptive/ 
Non-preemptive 

Dynamically Scheduled/ 
Statically Scheduled 

MTHREADED=1 
PREEMPTIVEMTHREADED PREEMPTIVE=1 DYNSCHDr:! 

NONPREEMPTIVE_MTHREADED PREEMPTIVE=0 DYNSCHD=1 

MTHREADED=0 
SINGLETHREADDYNSCHD PREEMPTIVE=0 DYNSCHD=1 

SINGLETHREAD_STATSCHD PREEMPTIVE=0 DYNSCHD=0 

Table 3-14 Configurable options in DARK++. 

3.5.2.4   Real-time Support 

Real-time scheduling algorithms could be based on fixed priorities or dynamic. While the rate 

monotonic priority assignment (RMA) algorithm, which assigns higher priority to shorter tasks is 

the optimal fixed-priority algorithm, the deadline driven scheduling algorithm is the optimal 
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dynamic scheduling algorithm. The dynamic scheduling algorithms, however, in general, have a 

lot of overhead associated with them. 

DARK++ provides the user the option of enabling real-time support. It has provision for the 

user to assign a function handle that will be used to run the provided scheduling algorithm. If this 

handle is null then the defauh algorithm that DARK++ uses is the fixed-priority RMA algorithm. 

In order to meet the high-performance objective, the complex real-time support necessary for 

POSIX compUance has been avoided in DARK++. 

DARK-H- provides the following simple API to monitor real-time deadlines. 

A deadline for an ECO can be set using the method: 

void ECO   ::   set_deadline(int  time); 

The time parameter specifies the time by which the ECO has to finish its execution. When 

this method is invoked, time is converted to an absolute time by adding the current system time 

to it and the ECO is added to the deadline queue. 

The following method can be used to ascertain whether an ECO has met its deadhne: 

bool ECO :: check_deadline(); 

This method removes the ECO fi-om the deadline queue and returns true if the ECO met its 

deadline. 

The DARK++ scheduler checks the first entry of the deadline queue in each switching cycle. 

If it finds an ECO that missed its deadline, it calls a user-provided handler. 

3.5.3 Experimental Evaluation 

This chapter explains the performance experiments carried out with DARK++. It presents the 

performance results and a comparison with the corresponding results for DARK. We also explain 

the reasons and the implications of the obtained resuhs. We have carried out empirical evaluation 

using three power control applications - the open-loop 3-phase inverter, the closed-loop 3-phase 

inverter and the closed-loop control for 3-phase boost rectifier. 

In the following section we explain dataflow applications and the three applications used in 

our evaluation in particular, providing a brief overview of the various ECOs in each of them and 

an explanation of the primary functions performed in a switching cycle. We present the dataflow 
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graph for each of them. Following this, in section 6.2 we present the results of the experiments 

and we conclude with a discussion of the obtained results 

The following subsections explain three power-electronic dataflow applications that have 

been used to carry out performance experiments. These are - open-loop 3-phase inverter, closed- 

loop 3-phase inverter and boost rectifier. Following these, Section 6.2 presents the empirical 

evaluation details and the results. 

3.5.3.1   Performance Results 

This section discusses the results obtained during the performance evaluation experiments of 

the kernel. The experiments were conducted on Analog Devices-SHARC 21160 digital signal 

processor. The Analog Devices VisuaIDSP++ simulator was used to run the experiments and 

collect profiling information. Experiments were conducted on the three dataflow applications 

described. 

We present the results obtained by comparing the performance of the different versions of 

DARK++ and DARK (fiill-featured, non-preemptive, single-threaded statically scheduled, single- 

threaded dynamically scheduled) on these three control applications. Table 3-15 through Table 

3-17 show the data for the three applications run using message queues. Table 3-18 though Table 

3-20 show the data for the applications when run using mailboxes. The tables show the total 

number of instruction cycles taken by DARK and DARK ++ for one switching period of the 

kernel for the mentioned applications. This is broken down into six categories of operations- 

ECO execution, dispatcher, context switching, ready queue operations and other operations. We 

can compare the contributions of each of these factors to the execution time for the application in 

the case of DARK++ with those in the case of DARK. Following this, we present graphs that are 

obtained by normalizing the overhead of DARK++ over the three control apphcations. Fig. 3-33 

is based on the performance of the applications using queued data channels and Fig. 3-34 shows 

the same data for the applications run with mailboxes. 
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Table 3-15 Performance Results in terms of number of instruction cycles for the open- 

loop inverter- with message queue data channels. 

Operations 
Full-featured Non-preemptive 

Single-threaded 
dynamic scheduled 

Single-threaded 
static scheduled 

DARK DARK++ DARK DARK++ DARK DARK++ DARK DARK-H- 

ECO 
execution 235 186 235 186 235 186 235 186 

Dispatcher 529 425 529 425 219 177 212 192 

Context 
switching 

1148 1148 1148 1148 0 0 0 0 

Ready queue 
operations 

525 924 525 882 525 831 0 0 

Data channel 
operations 

1304 917 999 680 945 680 312 536 

Other OS 
operations 

462 626 460 486 77 280 0 0 

Total 4203 4226 3896 3807 2001 2154 759 914 

Table 3-16 .Performance Results in terms of number of instruction cycles for the 

closed-loop inverter- with message queue data channels. 

Operations 
Full-featured Non-preemptive Single-threaded 

dynamic scheduled 
Single-threaded 
static scheduled 

DARK DARK-H- DARK DARK++ DARK DARK++ DARK DARK++ 

ECO 
execution 583 620 583 623 583 623 583 623 

Dispatcher 679 553 679 553 297 270 270 268 
Context 
switching 1476 1476 1476 1476 0 0 0 0 
Ready queue 
operations 612 1719 612 1236 612 1031 0 0 
Data channel 
operations 2659 2226 2059 1526 2059 1526 731 926 
Other OS 
operations 594 881 594 727 203 467 0 0 
Total 6603 7475 6003 6141 3754 3917 1584 1817 

The execution time for the three applications, as we may note from the above tables, 

increases as the applications increase in complexity, with more number of ECOs and therefore, 

more computation, more communications, and also increased context switching and scheduling 

overhead. We see that the full-featured version involves maximum execution time since it 

provides the maximum number of features; it performs a check for an equal or higher priority 

ready process at the end of every Read and every Write operation and transfers control to the ker- 
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Table 3-17 Performance Results in terms of number of instruction cycles for the boost 

rectifier- with message queue data channels. 

Operations 
Full-featured Non-preemptive Single-threaded 

dynamic scheduled 
Single-threaded 
static scheduled 

DARK DARK++ DARK DARK++ DARK DARK-H- DARK DARK++ 

ECO 
execution 778 638 778 638 778 638 778 638 

Dispatcher 1354 1057 1354 1057 585 495 567 529 
Context 
switching 2952 2952 2952 2952 0 0 0 0 
Ready queue 
operations 1811 2240 1811 2190 1811 2028 0 0 
Data channel 
operations 4252 3762 3174 2439 3174 2439 1020 1852 
Other OS 
operations 1224 2180 1224 1844 205 1317 0 0 

Total 12371 12829 11293 11120 6553 6917 2365 3019 

Table 3-18 Performance Results in terms of number of instruction cycles for the open- 

loop inverter - with mailbox data channels. 

Operations 
Full-featured Non-preemptive Single-threaded 

dynamic scheduled 
Single-threaded 
static scheduled 

DARK DARK++ DARK DARK++ DARK DARK++ DARK DARK++ 

ECO 
execution 235 186 235 186 235 186 235 186 
Dispatcher 529 425 529 425 219 177 212 192 
Context 
switching 1148 1148 1148 1148 0 0 0 0 
Ready queue 
operations 525 924 525 882 525 831 0 0 
Data channel 
operations 1040 521 734 307 734 307 67 280 
Other OS 
operations 462 626 450 486 121 357 0 0 
Total 3939 3830 3621 3434 1834 1858 514 658 
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Table 3-19 Performance Results in terms of number of instruction cycles for the 

closed-loop inverter- with mailbox data channels. 

Operations 
Full-featured Non-preemptive 

Single-threaded 
dynamic scheduled 

Single-threaded 
static scheduled 

DARK DARK++ DARK DARK++ DARK DARK++ DARK DARK++ 

ECO 
execution 778 638 778 638 778 638 778 638 

Dispatcher 1354 1057 1354 1057 585 495 567 529 

Context 
switching 2952 2952 2952 2952 0 0 0 0 

Ready queue 
operations 1811 2240 1811 2190 1811 2028 0 0 
Data channel 
operations 3699 2071 2640 1588 2640 1575 216 930 

Other OS 
operations 1224 2180 1224 1844 88 1317 0 0 

Total 11818 11138 10759 10269 5902 6053 1561 2097 

Table 3-20 Performance Results in terms of number of instruction cycles for the boost 

rectifier - with mailbox data channels. 

Operations 
Full-featured Non-preemptive 

Single-threaded 
dynamic scheduled 

Single-threaded 
static scheduled 

DARK DARK++ DARK DARK++ DARK DARK++ DARK DARK++ 

ECO 
execution 583 620 583 623 583 623 583 623 

Dispatcher 679 553 679 553 297 270 270 268 
Context 
switching 1476 1476 1476 1476 0 0 0 0 
Ready queue 
operations 612 1719 612 1236 612 1031 0 0 
Data channel 
operations 2271 1041 1698 887 1698 888 220 333 

Other OS 
operations 594 881 594 727 181 467 0 0 

Total 6215 6290 5642 5502 3371 3279 1073 1224 

nel if there is one. With the non-preemptive version of the kernel, an executing thread necessarily 

has to run to completion before another thread can begin execution, even if a higher priority 

thread becomes ready during the execution of the current thread. Hence process threads need to 

do no checking and switching of control to the scheduler. This significantly brings down the 

execution time. The single-threaded versions have no notion of separate process and scheduler 

threads. Instead, every process is run by a normal method call. Therefore single-threaded systems 
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are necessarily non-preemptive. The single-threaded dynamically scheduled version supports the 

notion of firing rules and processes are scheduled dynamically based on the sequence of Writes 

and the corresponding triggers to the sink processes. Since the process to be run at any time is 

determined dynamically, this version of the kernel still involves ready queue management 

operations. Hence although it is slower than the earher two versions discussed, it is slower than 

the single-threaded version in which processes have a pre-assigned execution order and the kernel 

essentially is a dispatcher and does no scheduling. 

We now present the performance resuhs for the three applications run with mailbox data 

channels. Mailboxes are data channels with unit capacity. Hence mailbox data channel 

management is much simpler involving no queue arithmetic, and simpler overflow handling. The 

above resuhs indicate that DARK++ has performance comparable to that of DARK. The full- 

featured version of the kernel, in particular, outperforms that of DARK for the open-loop inverter 

and for the boost rectifier applications running on mailbox data channels, while the closed loop 

inverter running with mailbox data chaimels on DARK++ is a shade slower than on DARK (1.2% 

slower). 

Performance overheads normalized over three control 
applications run on queued data channels 
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Fig. 3-33 Performance results for the two kernels with message queues. 
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Performance overheads normalized over three control applications 
run on mailbox data channels 
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Fig. 3-34 Performance results for the two kernels with mailboxes. 

Following are graphs that provide a good summary of all of the above data. They present the 

overheads imposed by each of the four versions of the two kernels, normaUzed over the three 

control applications. The first graph is for the applications run using message queues and the 

second one is for the applications run using mailboxes. After presenting these graphs, we will 

discuss the results gathered by comparing the GO versus the non-OO kernel. 

3.5.3.2   Discussion of tlie performance data 

It may be observed that the multithreaded versions of DARK++ running the applications 

using message queues resulted in marginally lesser speed than that of DARK, while miming the 

applications using mailboxes showed a performance gain. The data chaimels operations, which 

are implemented as macros in the C version of the kernel, are inlined methods in the C++ 

versions. Because these operations were actually being inlined by the compiler more often in the 

case of mailboxes than in the case of message queues, there was a significant performance gain. 

The single-threaded versions of DARK++ impose significant overhead. The DARK++ 

dispatcher for this version is slower than the DARK dispatcher unlike for the other versions. This 

is because, while the multithreaded kernel uses calls to setjmp to execute processes in all but the 

first switching cycle of the kernel, the single-threaded kernel always makes an explicit call to the 

ECO Implementation method and since this is a virtual method, there is a considerable overhead 

introduced due to the dynamic resolution to effect the call. 
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The context switching times are equal in DARK and DARK++ since both use the same 

custom setjmp and longfmp assembly functions to accomplish this. While the ECO execution and 

the scheduler execution times are comparable in the two cases, the ready queue operations have a 

significantly higher contribution to the entire execution time in the case of DARK++ than in 

DARK. This is because all accesses to any of the ready queue data members have been counted 

imder this category and there are a number of calls to such operations - e.g., calls to a method that 

returns the number of items present in the ready queue. Such calls are made both by the 

scheduler, as well as from the data channel operations in the case of preemptive scheduling, to 

check for other high-priority ready processes that may be waiting. Typically, it has been observed 

that simple methods that return the value of a data member take between 7-9 instruction cycles. 

Hence even if such a method is inlined by the compiler, there is an overhead incurred by the 

frequent use of such methods. 

The "other operations" category also takes more number of instruction cycles in the case of 

DARK-H- than in DARK due to the same reason as mentioned above. There are some generic 

methods that are frequently used by various callers to retrieve some data members and these 

introduce significant overhead. 

It is worth noting that a great many operations that are specified as macros in DARK are class 

methods in DARK++, with die "inUne" keyword. Therefore, while these operations are 

guaranteed to be preprocessed and efficient in DARK, many of them are not inlined by the 

compiler in DARK++. A better performance could have been achieved with DARK++ if it were 

possible to guarantee inlining of all methods. Also, the unpredictability of a method actually 

being inlined could lead to marginal irregularities in performance. 

The single-threaded versions of the kemel need do no context switching and hence the 

number of instruction cycles for the category is zero. The single-threaded statically scheduled 

kernel makes use of a precomputed order to execute the processes sequentially and hence does 

not use the ready queue. 

3.5.3.3   Summary 

From the data gathered on these three applications and from the above discussion, we may 

conclude that carefiil design in OO paradigm can yield appreciable performance. We summarize 

below, the most important points about 00 design and performance issues: 
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• As we have seen, it very naturally imposes the need for more method calls. While one can 

choose to specify such methods with the "inline" keyword, since it relies on the discretion of 

the compiler, there may be inefficiencies (if the compiler does not actually inline them). The 

disadvantage with inlining is that for huge applications, the entire code may not fit into 

memory if the memory offered by the embedded system hardware is limited. 

• Another related point is that, while it is often worthwhile to specify some frequently used 

(small) operations as macros in C, it may be inappropriate to do this in C++ (an OO 

language) where more often than not, we want operations as methods in a class and 

specifying these as macros might lead to a sloppy design. In DARK++, as stated earlier, we 

have specified a few generic operations used by the data channel Read and Write methods as 

macros. The question really is a tradeoff between elegance and performance. 

• It is best to avoid virtual methods as these rely on dynamic binding, which impact 

performance considerably. The performance numbers for the single-threaded statically 

scheduled version of DARK++ reflect this fact very clearly. However, if the system being 

designed compels the use of virtual methods, one necessarily pays for the V-table look-up 

and resolution during run-time. However, we often lose the flexibility and natural 

extendibility through inheritance when we avoid usage of virtual methods. 

• There are some important points to remember while working on 00 design for performance- 

critical systems. Use of dynamic memory allocation, perhaps by creating objects "on the fly" 

is a bad idea for a system where performance is critical. This should be avoided. 

• Templates are often handy and neat to use in the OO design and user-defined templates do 

not have any inherent performance concerns associated with them since template 

instantiations take place before run-time. 

3.6 Transparent Distributed Messaging 

The protocols designed so far for power electronics systems are for single controller systems 

or multiple controller systems with fixed processor allocation. Single controller systems fail to 

use the advantages offered by distributed systems, which are improved efficiency and greater 

fault tolerance. Using multiple controller systems with fixed processor allocation severely 

restricts the flexibility and hence the usage of the system. 

In this report, we present a protocol for transparent inter-processor communication across a 

network thereby allowing transparent distribution of any multi-controller application. The 
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protocol is designed such that it can run the same apphcation without any kind of code change in 

virtually any kind of distributed configuration, where configuration is the number of controllers 

used in the system plus the processor allocation strategy used. The protocol works well even for 

single-controller applications and for pre-defined allocation of processors to controllers. The 

protocol, thus offers a lot of flexibility and ease of use in running a multi-controller application 

and evaluating its performance using different number of controllers and/or processor allocation 

strategy. The protocol also enables an application, with an automated processor allocation 

strategy, to transparently configure itself for any number of processor nodes without requiring 

any changes or recompilation. 

Dataflow architecture is a software architecture used to design software for plug and play 

power electronics building blocks. It is a data-driven architecture consisting of a large number of 

program elements to support component-level design. The embedded system being designed 

consists of a number of Elementary Control Objects (ECOs), which are concurrently executing 

entities. The ECOs are connected to each other through data channels. The ECOs read data fi-om 

the data channels, process the data and generate the output. 

The ECOs are scheduled by their firing rules. Firing rule for an ECO indicates the input 

channels on which the ECO should wait for data before being fired. A read on a data channel can 

unblock an ECO waiting to write data into that data channel. Similarly, a write operation can fire 

an ECO waiting for input on that data channel. The execution of the ECOs is managed by the 

DARK Operating system [2]. 

The application programmer provides a DFG (Dataflow graphs) descriptor file, which 

contains information on the number of ECOs present in the system and the data channels that 

connect them. The application programmer also provides implementation of the ECOs. 

The protocol makes use of the existing dataflow architecture to provide for transparent 

message passing between ECOs present on different controllers. 

3.6.1 Design and implementation 

Based on the number of controllers available, the system automatically allocates ECOs to 

different controllers. The controllers will be placed on a ring, which operate based on a protocol 

called PESNET [x]. The ECOs communicate asynchronously with each other by reading or 

writing data into the data channel. They are not aware of the number of controllers present in the 

system and hence of the distributed nature of the communication. 
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The protocol needs to ensure that communication between ECOs on different controllers is 

carried out transparently. This necessitates orderly arrival of messages and special handling of 

loss messages. 

3.6.1.1   Design 

Fig. 3-35 (a) describes the protocol for sending a data packet from the source ECO to a 

destination ECO, where the ECOs are on different controllers. The ECOs on a single controller 

communicate with each other by reading or writing data from data charmels. Distributed 

communication also occurs through data channels. In case of distributed communication, the 

source ECO writes data to a distributed data channel. The OS processes the data in the data 

channel, packs it into packet and passes the packet onto the FPGA. Note that the OS does not yet 

remove the data from the channel. The packet is then sent onto the ring by the FPGA. 

Fig. 3-35 (b) describe the protocol on the receiver side. When the FPGA receives a data 

packet, it stores the packet, to be later processed by the OS. The OS extracts data from the data 

packet and writes it to the data channel identified by the packet. It then prepares an 

acknowledgement packet acknowledging the number of data bytes written to the data channel. 

The acknowledgement packet is then passed to the FPGA. The FPGA sends the packet over the 

ring. Fig. 3-35 (c) explains the protocol when an acknowledgement packet is received. The OS 

deletes the data from the data channel based on the number of bytes acknowledged. 
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Fig. 3-35 Dataflow messaging protocols. 
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3.6.1.2 Data structure 

The protocol makes use of two circular buffers - the sendqueue and the ack_queue. A 

send_queue entry points to a distributed data channel that has data to send. An ack_queue entry 

points to a distributed data channel that is awaiting an acknowledgement for the packet sent. Note 

that the sendqueue and the ackqueue together will contain not more than one entry 

corresponding to each distributed data channel. The size of the sendqueue and ackqueue is 

equal to the number of distributed data channels in the system. 

The status of a data channel is indicated by the value stored in the alloctype field of the data 

channel. The alloctype field of a distributed data channel can have one of the three values 

1. WAITINGTOSEND when the data chaimel contains data to be sent across the ring 

2. SENT when a packet has been sent and an acknowledgement is awaited and 

3. EMPTY when the data channel is empty and is not waiting for an acknowledgement. 

4. The alloctype field of a normal data channel will always have value NULL. 

The FPGA uses two fixed size buffers - FPGAsend and FPGAreceive. The FPGAsend 

stores packets to be sent on the ring while the FPGAreceive stores packets received from the 

ring. Data structures for the protocol are as shown in Fig. 4. Note that the size of the sendqueue 

and ackqueue is equal to the number of distributed data channels. 

3.6.1.3 Implementation 

The sender's side protocol is described by the dotted lines in Fig. 3-36. When an ECO writes 

data into a distributed data chaimel with alloctype field as EMPTY, a pointer to the data channel 

is stored in a sendqueue entry. The alloctype field of the data channel is changed to 

WAITING_TO_SEND. 

When the operating system scheduler is called, it checks for entries in the send_queue. If the 

sendqueue is not empty and there is space in the FPGAsend buffer, the scheduler reads data 

from the data channel pointed to by the send_queue entry writes it into a packet and then stores 

the packet in the FPGA_send buffer. A pointer to the data channel is removed from the 

sendqueue and added in the ackqueue. The alloctype field of data channel is changed to 

SENT. Note that the data is not yet removed from the data channel. 
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Fig. 3-37 shows the packet structure. The packet contains addresses of the source and 

destination controllers. The datachannel_id field is used to uniquely identify the data channel and 

thereby the ECOs associated with the data channel. 

ECO Distributed data channel send_queue 

t]--fs^ 

> 

Controller 

__iL 

I     I   1^ ack_queue 

FPGA 

nng 

Fig. 3-36 Data structures. 

typedef struct 
{ 
Net_Address froin_address    : 8; 
Nct_Address to_address      : 8; 
char datachannel_id        : 16; 
packet_cominand command      : 4; 
unsigned int number_of_bytes: 4; 
char data [9]; 

} Digested Packet;  

Fig. 3-37 Pacltet structure. 

The command field is use to indicate the packet type. The command field can have one of the 

two values - 

1. data_packet 

2. ack_packet 
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For a data packet, the number_of_bytes field indicates the number of data bytes contained in 

the packet. The number_of_bytes field for an acknowledgement packet indicates the number of 

data bytes acknowledged by the receiver. 4 bits have been allocated for the command field to 

provide for fiiture improvements. 

When the FPGA gets an empty token on the ring, it grabs the token and passes the data 

packet onto the ring. 

The FPGA on the receiver side removes the packet from the ring and stores it in the 

FPGA_receive buffer, if there is space in the buffer. If the FPGAreceive buffer is full, the FPGA 

sends out an acknowledgement packet acknowledging zero bytes of data. 

The operating system scheduler checks the FPGA_receive buffer for any incoming packets. If 

the receive buffer is not empty, it reads the packet and checks if there is space in the data channel 

identified by the packet. If there is space for the entire data packet, then the data packet is written 

into the data channel. Otherwise, the scheduler overwrites the oldest data element or the newest 

data element or writes part of the data that fit into the available space in the data channel. These 

actions are based on value of the Overlflowstyle field of the data channel. In all cases, an 

acknowledgement packet is sent back acknowledging the number of bytes written into the data 

channel. 

When an acknowledgement packet is received, the number of bytes acknowledged 

determines the number of bytes to be deleted firom the data channel. The pointer to the data 

channel in the ackqueue is then removed. 

3.6.1.4    Fault Tolerance 

In order for the messaging to be transparent, the design needs to ensure that packets arrive in 

order. Orderly arrival of packets is ensured by requiring every packet to be acknowledged and the 

next packet for a given data channel be sent only after an acknowledgement is received for the 

previous packet. 

When a packet is sent over the network, a copy of the data is stored on the sender's side and 

is deleted only after an acknowledgement for the data is received. If there is not enough space for 

the entire packet data in the data channel on the receiver side, it is possible that only part of the 

data gets written into the data channel and hence only part of the data gets acknowledged. In that 

case, only those data bytes that are acknowledged are deleted and an attempt is made to re-send 

the unacknowledged data bytes. 
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For packets lost due to node or ring failure, the protocol relies on the underlying PESNet 

protocol to ensure fault tolerance. The PESNet protocol makes use of a dual, counter-rotating 

fiber optic rings to improve the fault tolerance of a network. In case of a node or a link failure, the 

bi-directional ring allows the message can backtrack. Thus, the PESNet protocol ensures that 

there won't be any missing packets irrespective of a node or a link failure. 

3.6.2 Analytical performance assessment 

An analysis of the system performance is performed based on factors such as network speed, 

number of nodes on the ring and saturation of the network. 

Let us consider a network of N nodes. Let P be the size of a packet in bits and R be the 

transmission rate of the network. Then, the time required for a complete cycle of a packet that is 

the time between the transmission of a packet by a sender, its processing at the receiver and the 

return of an acknowledgement packet from the receiver back to the sender is given as 

t cycle       J- process "^ ^ send "*" A ack 

where, 

Tcycie   = Time to transmit packet from sender to receiver 

Tproccss = Time to process the packet at the receiver 

Tack     = Time to transmit the acknowledgement from the 

receiver back to the sender 

The time to transmit a packet from sender to receiver depends on the time to send a packet 

over a single network link, the number of hops between sender and receiver and the saturation of 

the network. Hence, 

Tsend — Tsatdelay + DistaUCC X Tpacket 

where, 

Tpacket      = time to send a packet over a single link, 

Tsat delay = Delay due to network saturation for a single packet and 

Distance = # of hops between sender and receiver. 

The network can be considered as divided into slots of data packets. A packet can be sent 

over the network only at the start of a packet slot.   Since the time to process a packet at the 
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receiver is very small, it can be safely assumed that the processing time is equal to length of a 

single packet slot and hence equal to the time to transmit a packet over a single link. 

1 process       A packet 

The time to transmit an acknowledgement packet can be given as 

Tack = Tsatjelay + (N - DistanCC) X Tpaeket- 

Hence, the total cycle time can be written as 

Tcycle = 2X Tsatdelay + ( N + 1 ) X Tpaeket 

If s is the saturation index of the network with value between 0 and 1, then the saturation 

delay can be given as 

Tsatdelay ~ 1 /2xs/(l-s)x Tpaeket- 

If Tdeiay IS the delay introduced by each node in the network, then 

1 packet ~ -T / K. + 1 delay- 

Hence, the time for a complete cycle can be given as 

Tcycle = (N + 1 + S/(1-S)) X Tpaeket. 

To provide a basis for concrete discussion, we consider an example application with two 

controllers and 6 phase legs. The controllers are switching at a frequency of 20KHz. As there are 

2 controllers and 6 phase legs, the number of nodes, N in the network is 8. Let us assume that the 

network saturation is 25% that is value of s is 0.25. As 8 data bits get transmitted as 10 bits due 

to 4B/5B encoding by the transceivers, a packet of size 16 bytes will give a value of P as 160 bits. 

If the network speed R is lOOMbytes per second, and the delay introduce by each node, Tdeiay is 3 

nanoseconds, then the total cycle time will be around 15 microseconds. 

Thus, it will be possible to perform 3 such cycles in a single switching period of 50 

microseconds. 

3.7 Comparisons between the dataflow approach, Matlab 

Simulink, and Real-time Workshop package 

Several commercial software packages have been developed to provide graphical control 

software design and simulating environment. For example, Mathworks Simulink [xi] is a widely 

used software package for modeling, simulating and analyzing dynamical systems; and Real-time 
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Workshop [xii] generates optimized, portable and customizable code from Simulink models, 

which could run on many production targets. These two software packages together provide a 

software platform for rapid prototyping process and automatic program building. 

From software construction point of view, both approaches attempt to reduce engineering 

effort by construct software from standard fimctional blocks in design libraries. Dataflow 

architecture allows users to design software from fimctional self-contained library blocks at the C 

code level. Simulink and Real-Time Workshop save software design effort by providing a 

graphical modeling environment and automatic C code generation. Though dataflow approach 

requires a dataflow graph description, which is handwritten so far, this software architecture has 

the potential to incorporate a graphical design interface to fiirther reduce the software design 

period and cost. 

However, the two approaches differ dramatically at the constructed software. A real-time 

kernel designed for dataflow architectural software provides abundant real-time control features 

to meet requirements from different kinds of applications. These real-time control features range 

from static single thread scheduling to preemptive multithread scheduling. The bare board 

embedded C code generated from Simulink and Real-Time workshop supports only single tasking 

or preemptive multitasking. Also because of the natures of infrastructures of the generated 

software, the dataflow architectural software is easy to design for distributed control application, 

while Simulink and Real-Time Workshop is more suitable for centralized control software 

design. 

3.7.1 Overview of Mathworks Simulink and Real-Time Workshop 

Software 

In recent years, MathWorks Simulink and Real-Time Workshop software packages have been 

widely used in industry and academia for modeling and simulating dynamic systems and 

generating C code for rapid prototyping or embedded control. Simulink is a software package for 

modeling and simulating dynamic systems. It provides a graphical design envirorraient that 

allows designers to build models as block diagrams. Real-Time Workshop generates optimized, 

portable and customizable ANSI C code from Simulink models to create stand-alone 

implementations of models that operate in real-time and non-real-time in a variety of target 

environments. The relationships between Mathworks' MATLAB, Simulink and Real-Time 

Workshop are shown in Fig. 3-38. 
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Early rapid prototyping iterations 

Fig. 3-38 Relationships between Math Works MATLAB, Simulink and Real-time Workshop 
software packages. 

The overall software design procedure using Simulink and Real-Time Workshop package is 

first draw block diagram based system model in Simuhnk, and then build target C code using 

Real-Time Workshop. Simulink provides standard block libraries and a graphical design 

environment. It supports hierarchical design, which means a block can be composed of several 

sub blocks. It also allows users to create their customized library to simplify their specific design 

procedure. The designed model can be simulated in Simulink to adjust system model structure or 

model parameters. After several such iterations, when the simulation results match the design 

specifications, the model can be translated into C code through Real-Time Workshop. Real-Time 

Workshop allows users to choose from several code formats for different code running targets. To 

generate C code that can be comphed for embedded systems. Embedded Coder format is applied 

for the design example in this paper. 

The overall software design procedure using Simuhnk and Real-Time Workshop package is 

first draw block diagram based system model in Simulink, and then build target C code using 

Real-Time Workshop. Simulink provides standard block libraries and a graphical design 

envirorunent. It supports hierarchical design, which means a block can be composed of several 

sub blocks. It also allows users to create their customized library to simplify their specific design 

procedure. The designed model can be simulated in Simulink to adjust system model structure or 

model parameters. After several such iterations, when the simulation results match the design 

specifications, the model can be translated into C code through Real-Time Workshop. Real-Time 

Workshop allows users to choose from several code formats for different code running targets. To 

generate C code that can be compUed for embedded systems, Embedded Coder format is applied 

for the design example in this paper. 
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To generate embedded C code, there are some constrains on model blocks. It requires that all 

blocks in the model are either discrete time block or continuous time block but can be sampled at 

discrete time. If multiple sample rates are used in a system, it requires that the lowest sample will 

be chosen as the base rate and other higher sample must be multiple time of the base rate. The 

purpose of these constraints is for the Embedded Coder to generate C code with some basic real- 

time scheduling support. 

The C code generated from Embedded Coder is in legacy main-program-and-subroutine 

style, composed of a sample main program, an interrupt service routine (ISR) to implement the 

control algorithm and data structure descriptions. The pseudo code of the main program and the 

ISR, rt_OneStep (), is shown in Fig. 3-39. In the main program, after initialization, the DSP enters 

an infinite loop to wait for interrupts. The interrupts occur at the base sample specified in the 

Simulink model. And in the ISR, ModelStep is called to implement control in the current time 

step. The structure of ModelStep is shown in Fig. 3-40, where MdlOutput computes the outputs 

of a model, MdlUpdate updates model states, and MdlDerivatives computes derivates for model 

states if necessary. 

mainQ 
{ 

Initialization (including installation of rt_OneStep as  an interrupt service routine for a real- 
time clock) 

Initialize and start timer hardware 
Enable interrupts 
While(not Error)and (time <flnal time) 

Background task 
EndWhile 
Disable interrupts (Disable rt_OneStep from executing) 
Complete any background tasks 
Shutdown 

} 

(a) Pseudo main program. 

rt_OneStepO 
{ 

Check for interrupt overflow or other error 
Enable "rt_OneStep"(timer)interrupt 
ModelStep—Time step combines output, logging, update 

> 

(b) Pseudo ISR program. 

Fig. 3-39 Pseudo code of Embedded Coder generated C program. 
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3.7.2 Comparison of Dataflow Approach and Simulink & Real-time 

Workshop Package 

A 3-phase voltage source inverter (VSI) with closed voltage loop is chosen as the design 

example. The specifications of the 3-phase VSI are: 

Input: Vdc = 200 V; 

Outputs: balanced 3-phase sinusoidal with line-to-line voUage lOOV; 

Switching frequency: fs = lOkHz; 

Output inductance L = 300 uH at each phase; 

Output capacitance C = 100 uF at each phase. 

The voltage loop is design to have phase margin 35 degree and 10 dB gain margin. 

[ 

start Exectition^j 

MaiStart I 

MdlOutput 

MdlUpdate 

MdlDerivatives 

udioutput 

MdlDerivatives 

MdlTerminate 1 
End 

Fig. 3-40 ModelStep structure. 

The dp transformation technology is used to simplify the close loop control design and SVM 

technology is used to implement the modulator. The digital controller is assumed to run in an 

Analog SHARC DSP (ADSP 21160). Analog Device also provides a software development 

environment Visual DSPA^isual DSP ++, which support ANSI C. 

3.7.2.1   Software design procedure 

Fig. 3-7 shows the dataflow graph of the close loop control of the 3-phase VSI, while Fig. 

3-41 shows its Simulink mode. From the high end user point of view, the two software 

construction approaches have similarities. For the user of Simulink and Real-Time Workshop 
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package, the main task is using Simulink as a graphical interface to drag and pull blocks from 

design libraries and then chooses a desired target for the Real-Time Workshop to compile into C 

code. When using the dataflow approach, the designer only needs to provide a dataflow 

description file to describe ECOs and their connections. 
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Fig. 3-41 Simulink IVIodel of voltage close loop control of 3-phase inverter. 

3.7.2.2   B. Code structure and performance analysis 

Though there is a significant similarity in Fig. 3-7 and Fig. 3-41, both composed of ftinction 

blocks and data connections, the generated code are in different structures because of different 

block implementation methods and block connection mechanisms. 

The generated code from Real-Time Workshop Embedded Coder [xiii] is in main-program- 

and-subroutine style as presented in section HI. A block in a Simulink model has two tasks during 

one time step: compute output and update states if necessary. In the generated C code, output 

computation for individual blocks are combined into MdlOutput, while states updating for 

individual blocks are combined into MdlUpdate. Inter-procedure calls are reduced in order to 

optimize the generated code for real-time execution. The block execution sequences inside 

MdlOutput and MdlUpdate are prescheduled. Arrows in Fig. 3-41 are translated into singular 

storage units and used to decide the prescheduled block execution sequence. 
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Blocks in Fig. 3-41 are independent processes in dataflow software, while arrows are data 

channels. Each process has its self-contained functionality. The execution sequence of processes 

can be statically scheduled, or dynamically scheduled. In dynamically scheduling, Each ECO 

process can be activated at its own sample rate and the activation depends on its input data 

channels status. There is no constraint between sample rates of different ECO process. However, 

context switching between ECO processes and maintaining data channels introduce run-time 

performance overhead. 

Fig. 3-42 shows the DSP execution cycles during one switching period for Embedded Coder 

generated C code and dataflow software with different real-time kernel featiu-es. The code 

efficiency of Embedded Coder generated C code is compared to that of dataflow C code with 

mailbox data channels and static single thread scheduling. From Fig. 3-42, it can be seen that the 

Embedded Coder generated C code actually takes more time on computation than any dataflow 

counterparts. What the Embedded Coder optimized diuing its code generation is mainly reduced 

inter-procedure calls. 

Since the Embedded Coder generated C code is in main-program-and-subroutine style, it has 

the drawbacks inherent in its software style. First, the generated code is naturally fit in centralized 

control structure. Significant extra engineering effort will be involved to split the generated code 

into distributed control system since the blocks in Simulink model are flattened. Second, there is 

possibility that the generated code is not absolutely compatible with the target compiler, which 

makes the software debug task tedious because the generated code contains MATLAB specific 

definitions. Small changes in the generated code may cause the designer goes back to the 

Simulink models. 

For dataflow software, though it introduces run-time performance overhead, every ECO 

process is independent, which makes the software easily run in distributed control system or 

multi-processor system. The inter-process communications is carried through data chaimels, 

which can be designed upon network communication protocols and transparent to applications. 

The ECO processes allocation mechanisms have been designed and the ECO inter-processes 

communication protocol is under design [xiv]. 
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Fig. 3-42. Code performance comparison. 

3.8 Conclusion 

By focusing on software architecture, we proposed dataflow approach to designing power 

electronics control software that is built fi-om standardized modules, possesses a higher degree of 

reusability, and supports greater reconfigurability. An appropriate architectural design for power 

conversion system has been constructed, which is a key element of its long-term success. We 

implemented quite number of control applications in dataflow architecture. We experimentally 

assessed the context switching time of the selected micro-kernel. We also experimentally 

measured the additional overhead imposed by the ECO-based dataflow style by comparing a 

small collection of control algorithm implementations against existing baseline versions written 

as traditional C programs. In order to adpat dataflow control software to distributed computation 

enviromnent, we designed transparent messing protocols. Finally, we compared our approach to 

other commercially software platforms. 
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4 HARDWARE MANAGER 

4.1 Introduction 
At the core of the research done on the PEBB concept are the ideas of reliability, flexibility, 

and modularity. PEBB research is establishing power conversion systems that are distributed, 

reliable, and flexible in nature. The Universal Controller is the keystone to these principles; the 

remaining stones are the Hardvi^are Managers. The Hardware Manager board interfaces the 

control loop to the power stage. On one side, the Hardware Manager coimects into the 

information system via optical fibers arranged in single or dual ring structure. On the other side, 

the Hardware Manager connects to the power stage through a phase leg, forming a basic PEBB. 

The PEBBs are combined in several fashions to obtain a number of converter topologies (please 

see Chapter 5 - Power Stage). The idea is not to concentrate on a specific topology or power 

level, for the system is independent of such constraints (up to a limit). Thus we see the flexibility 

and modularity of the PEBBs. The following chapters describe the design, operation, testing, and 

the future research associated with the Hardware Manager. 

During the past year of this project, a brand-new Hardware Manager board was designed, 

manufactured, assembled, and tested. Fig. 4-1 shows a picture of the top and bottom views of 

this board. The new Hardware Manager controls newly developed 33kW PEBB hard switched 

phase legs, shown in Fig. 4-2. The new Hardware Manager now uses a Xilinx FPGA, has support 

for a dual-ring communication protocol, buih-in protection mechanisms, as well as several 

debugging features. 

On a board level, the Hardware Manager was designed similarly to the PEBB. Every 

functional part of the board, from communications to the sensors, is basically independent of each 

other. The VHDL code in the Hardware Manager, just as in the Universal Controller, can be 

instantiated individually, and thus making troubleshooting much easier. 

The communications on the new Hardware Manager has been shown to be more reliable, and 

is working just as expected. The operation of the sensors has also been verified. Some errors 

were found with this new version of the Hardware Manager, but they have been easily 

correctable, cosmetic mistakes. Overall the Hardware Manager board has been a big success, 

considering the development and troubleshooting time, and its potential for the future. 
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Fig. 4-1 New Hardware Manager developed for the PnP PEBB-based power electronics 

systems, a) top and b) bottom views. 
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Fig. 4-2 New PEBB module using the Hardware IVIanager. 
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Fig. 4-3 PCB Layout of the Hardware Manager 

4.2 Design 

The Hardware Manager board interfaces the phase legs to the information system, thus 

making up the basic power electronics building block (PEBB). It is responsible for performing 

control functions specific to the hardware used in implementing the power stage, but altogether 

independent of converter topology. The Hardware Manager, phase legs, and the power stage 

were designed according to the principles of PEBB, making the system modular and flexible. 

Different topologies need only control code modifications, and possibly small configuration 

changes in the power stage. 

Several key ideas were kept in mind while designing the new Hardware Manager, such as 

incorporating sensing and protection mechanisms, the ability to support a dual-ring 

communication network, and modular design techniques. The Hardware Manager was designed 
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and built to be compatible with the previously buih PEBBs and the capabilities of the new 

generation Universal Controllers. The new Hardware Manager thus includes voltage, current and 

temperature sensors, dual optical transceiver circuitry, and the IPM driver-interface circuit. The 

new Hardware Managers are backwards-compatible to the old phase-legs, but mainly designed to 

take advantage of the capabilities of the new Universal Controller. 

Central to the operation of the board is the Xilinx FPGA. This programmable logic chip 

controls all aspects of the operation of the Hardware Manager, and was chosen because of its ease 

of use, versatility, and size. The FPGA was programmed with modular VHDL code, which 

administers every board function, from communication, to sensors, to the PWM signals going to 

the IPM driver circuit. Because of its size (the number of gates), the FPGA can easily manage all 

Hardware Manager functions while still operating fast enough to execute all necessary code in 

one switching cycle. This means the speed of the FPGA was not a determining factor when 

choosing the switching frequency. As more complex functions and protocols are implemented, it 

may become a barrier. To solve this, the Hardware Manager may have to use a faster, larger 

FPGA (please see Fig. 4-4), or use more efficient coding methods. 

Device System Gates CLB Array Logic Cells 
Maximum 

Available I/O 
Block RAM 

Bits 
Maximum 

SelectRAM+™ Bits 

XCV50 57,906 16x24 1,728 180 32,768 24,576 

XCV100 108,904 20x30 2,700 180 40,960 38,400 

XCV150 164,674 24x36 3,888 260 49,152 55,296 

XCV200 236,666 28x42 5,292 284 57,344 75.264 

XCV300 322,970 32x48 6,912 316 65,536 98,304 

XCV400 468,262 40x60 10,800 404 81,920 153,600 

XCV60Q 661,111 48x72 15,552 512 98,304 221,184 

XCV800 888,439 56x84 21,168 512 114.688 301,056 

XCV1000 1,124,022 64x96 27,648 512 131,072 393,216 

Fig. 4-4 Virtex-series device comparison 

The Hardware Manager participates in the system via dual (or single) optical fiber rings, 

managed by the PESNet communication protocol. Handling communication are two Cypress 

communication chips (CY7C9689A-AC) and high-speed optical transceiver circuits. This chip 

has integrated transmitter and receiver circuits, and is a vast improvement over the 

communication chips used in the previous Hardware Managers. The Cypress chip is much 

smaller and thinner, which conserves board real estate, and dissipates heat more efficiently. 
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Besides being big and bulky, AMD TAXI chips used in the previous version became extremely 

hot during normal use. 

The Hardware Manager has advanced on-board LEM vohage and current sensors, on-board 

temperature sensor, and a thermocouple input to directly measure the temperature of the IPM. 

These sensor signals are tied to the FPGA via two analog-to-digital converters. 

Powering the board are several compact, low profile dc/dc converters. The board uses a 5V 

input, and then converts that into 5V, 2.5V, 3.3V, and +/- 15V levels. Furthermore, the board has 

floating power supplies to drive the gate signals of the IPM (dual 15V, 3000V isolation power 

suppUes). 

Last, but not least, the board was outfitted with high-density connectors for the monitoring 

and debugging of digital I/O signals, as well as to allow for future expansion: an additional sensor 

board could be connected to the Hardware Manager, and more digital signals sent to the FPGA, 

expanding its fiinction. The board also has 5 additional A/D channels, allowing more analog 

signals to be linked to the FPGA. 

Overall, the modularity of the PEBB concept has carried over into the design of the Hardware 

Manager. The structure of the Hardware Manager is shown in Fig. 4-5 , where this can be clearly 

seen. Since there are no shared data buses, each part is truly independent of the other functions of: 

the board, linked together only at the FPGA. 

Driver circuit Section —i 

, FIlMcCi'iKin.nluilMf^ 

Fig. 4-5 Hardware Manager's modular structure 
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Section Functionality 

FPGA Manages board other functions, executes control command. 

Communication Dual-ring compatible, high-speed optical network. 

Sensor Area Voltage, current, and temperature sensors provide 

information for board monitoring, fault protection, and control 

code execution. 

Digital I/O Ease troubleshooting by allovring up to 63 digital signals to be 

analyzed concurrently. 

Driver Circuit Dual, 3000V-isolated floating power supplies. Includes switch 

fault signal. 

Hex Displays Important debugging and testing tool. 

Fig. 4-6 Hardware Manager's sectioned functions 

4.2.1 FPGA Design 

The FPGA is at the center of the Hardware Manager, both physically and functionally. The 

Hardware Manager was designed to be modular and sectioned. This modular approach translates 

into easier troubleshooting, which leads to fast development times. Additionally, this approach 

contributes to a very organized physical layout and VHDL code. All of the subsections of the 

Hardware Manager directly interface to the FPGA: the communication chips have direct lines to 

the FPGA's VO ports, as do the analog-to-digital converters and the expansion connectors. 

The modularity of the VHDL code was very beneficial while troubleshooting. Each section 

was implemented and tested individually, and the board was verified piece-by-piece. Testing 

code sections individually narrows down the sources of any encountered problems. Moreover, 

the debugging connectors can be mapped to virtually any digital signal from the FPGA. These 

signals can then be seen using a Logic Analyzer. 

The specific FPGA chosen was the Xilinx Virtex XCV300-4BG352. This is Virtex series, 

2.5V chip, chosen for its compatibility to 5V logic signals. A newer, faster, and more economical 
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alternative would be to use the Virtex-E series; however, because of its incompatibility to 5V 

signals, nearly all of the input lines would have to be buffered. While simple enough, due to the 

number of signals between the communication chips and the FPGA, this became expensive in 

terms of board space. Future revisions of the Hardware Manager may make use of this newer 

FPGA. 

While the FPGA offers a number of benefits, it does so with some difficulties. The 

manufacturing and populating of the FPGA's BGA package is not a trivial task. The boards have 

to be etched perfectly, and the vias aligned correctly in order for the component's solder bumps 

not slide away from the contacts. This was a problem in one specific area of the FPGA where 

some vias were too close to the pads. However, the solder ball stayed in its place and the signal 

was preserved. Fig. 4-7, below, shows the detailed FPGA area layout. Problem area is shown in 

Fig. 4-7. Future versions of the Hardware Manager will explore better manufacturing technology, 

which will allow the use of smaller vias. This single adjustment should help enormously with the 

mounting of the FPGA. 

Fig. 4-7 Layout of the FPGA 
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Fig. 4-8 Areas of concern in mounting of tlie FPGA 

4.2.2 Communications Circuitry Design 

: The cdnimunicdtionis circuit design was a crucial portion of the Hardware Manager. The 

concept of the PEBB relies on the abihty of the Hardware Managers to communicate with the 

Universal Controller and with other Hardware Managers. Another reason the communication 

circuitry needs to be robust is possible interference from high-power switching signals from the 

IPM, which is located not too far from the digital circuitry of the Hardware Manager. Clearly, 

without communication, the Hardware Manager would be rendered useless. 

The Cypress commxmication chip was chosen for several reasons: integrated transmitter and 

receiver, small TQFP package, and good thermal characteristics. The Cypress chip was a vast 

improvement over the AMD TAXI chips used in the previous Hardware Managers, and offered 

many more advanced options. Another reason for choosing the Cypress chip was its 

compatibiUty to the old AMD chips via a simple adapter board (see below, TAXI2CYP). 

However, the Cypress chips also caused some headaches, mostly due to the complexity of its 

fiinctions. 

The communications circuitry used in the Hardware Manager and Universal ConfroUer are 

high-speed optical networks, which require well-built transceiver circuits. Trace thickness and 

length become very important at these high frequencies, as well as placement of components. 

Therefore, great care was used in designing this portion of the board, and the lessons learned from 

128 



the latest version of the Universal Controller were very useful. Still, a few problems were 

encountered, especially relating to the Cypress transceiver chips. Several pins in the Cypress chip 

take on different active states depending on the mode of operation. Failure to recognize this led 

to several errors, which delayed launching of both the Universal Controller and the Hardware 

Manager. 

More problems were found with the termination circuit used to bias the differential signals: 

IN+, JN-, OUT+, and OUT-. The magnitude and biasing of these signals are keys to the well 

being of the communication between modules. Line termination resistors incorrectly biasing the 

waveform caused initial failures with the receiver. The erroneous waveforms had smaller than 

normal amplitudes, and as consequence, data was not recognized by the transceiver chip. After 

the termination was corrected, and the bias adjusted, communication was estabUshed. The correct 

termination biasing circuit is shown below, in Fig. 4-9 , for both receiver and transmitter: 

rR3036 
rR3031 <, 50 

50 

F1.INA+ 
FIDJA- 

+5V 

TR303! 
82     '? 

>'T(.3032 
. 120 

C3014 
■.O.luF 

Fig. 4-9 Termination Circuit for Differential Signals in both Receiver and Transmitter 

Circuits 

The complete receiver and transmitter circuit is shown in Fig. 4-10 and Fig. 4-11 , 

respectively. The layout of the communication section of the Hardware Manager is detailed in 

Fig. 4-12. 
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Fig. 4-11 Optical Transmitter Circuit 
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Fig. 4-12 Layout of the communications circuitry 

As mentioned above, the Cypress chip had an additional advantage in its ability to be easily 

interfaced to the old, and discontinued, AMD TAXIchip AM7968 and AM7969 (receiver and 

transmitter). Therefore, an interface board was created that effectively translated the Cypress 

chip to a TAXIchip interface. The layout of this board, called TAXI2CYP, is shown below, in 

Fig. 4-13. 
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Fig. 4-13 Composite Print of TAXI2CYP Board 

4.2.3 Sensor Circuitry Design 

The Hardware Manager was designed with on-board voltage, current, and temperature 

sensors. The voltage and current sensors used are LEM LV-25P and LA-200, respectively. The 

voltage and current sensor information is sent to an Analog Devices AD7869 analog-to-digital 

converter, which in turn sends the 12-bit data to the FPGA. 

The voltage and current sensors are accurate, top-of-the-line parts. Both sensors are closed- 

loop Hall Effect sensors, with roughly 100-kHz bandwidth. Having accurate and reliable sensors 

is very important, since the control algorithm acts on the values of voltage and current supplied 

by these sensors. The voltage and current sensors are connected as shovwi in the schematic 

diagrams below (Fig. 4-14 and Fig. 4-15 ). 

132 



J14006 
<40k 

R4007 

401: 

U4002 

HT+     V+ 

VOUT 

HT-      V- 

T 

1 R4000 
>300 

Fig. 4-14 Voltage sensor schematic diagram 
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Fig. 4-15 Current sensor schematic diagram 

The temperature sensor is a Maxim MAX6627 SPI-compatible device. This device uses the 

temperature dependence of the resistance of a silicon device, such as an MMBT-3904 transistor, 

to accurately measure on-board temperature (see schematic on Fig. 4-16 ). The purpose of this 

sensor is to monitor the sensing circuitry. As shown above, the voltage sensor uses two 5W, 40- 

ki2 resistors placed in series to measure the dc-bus voltage. At full rated power, these resistors 

each will dissipate close to 4W of power. Should these resistors overheat, they may cause 

damage to sensitive digital components. Therefore the monitoring of the on-board temperature 

becomes an important safety mechanism, allowing the Hardware Manager to prevent damages 

due to over-temperature. 
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Fig. 4-16 Schematic diagram for the Temperature Sensor 

4.3 Operation 

The Hardware Manager was designed with the intent to operate in plug-and-play fashion, 

whereas any PEBB module can take place of a faulted one, or operate in any region of a specific 

topology. The Hardware Manager was built to be application independent, and can be used in 

muhiple topologies. The only restriction is their individual power rating of 33kW, SOOVdc, and 

50A nominal current. The Hardware Manager also offers protection and warning systems to go 

along with system-level redundant safety measures. 

Operation of the Hardware Manager is controlled by the Xilinx FPGA. The FPGA may be 

programmed directly (via JTAG), or by the on-board PROM. The normal operation of the 

Hardware Manager includes managing communication with other nodes, sensing temperature, 

voltage, and current levels, and executing the corresponding control instruction sent by the 

Universal Controller for that switching period. The Hardware Manager receives a specific 

command fi-om the Universal Controller, executes it, and reports back its sensor values - it knows 

nothing about the present topology, control algorithm, or power level, which are all handled in the 

Universal Controller. 
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In our system, each hardware manager controls one half-bridge IPM module (Fig. 4-17 ). 

The EPM module contains two switches (top and bottom) and their respective gate drivers. The 

interface to the module is logical with a single ended power supply of 15 volts (see below). The 

IPM module connects directly to the PCB and is isolated from the digital circuitry via opto- 

couplers. The gate drive scheme provides short circuit protection (by means of the de-saturation 

voltage circuit) and fault detection, with the fault signal 'f. In order to reduce the number of 

supply voltage levels (and thus the number of dc-dc converters), Vdd and Vec were arranged in 

floating point configuration. 

Fig. 4-17 IPM Module 
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Fig. 4-18 Dual Module IGBT Gate Drive Circuit 

The normal operation of the Hardware Manager includes the execution of the control 

algorithm sent by the Universal Controller: the controller sends a duty cycle, which is modulated, 

and applied to the switches above. The information sent over the ring is tailored for that 

individual Hardware Manager. The Hardware Manager, in turn, sends its sensor information 

back to the Universal Controller, which computes the next duty cycle value. This is a simplified 

version of the normal communication over the fiber ring; other information may be sent, as 
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necessary.  The details can be found under the new PESNet communications protocol, PESNet 

2.0. 

The Hardware Manager boards have several fault protection and warning systems. The 

VHDL code includes over-voltage, temperature, and over-current protection, as well as status 

LEDs, which let the user know it is operating properly. These LEDs show the on-board dc/dc 

converters are supplying the appropriate voltage level, as well as FPGA and IPM faults. 

A worst-case power consumption analysis of the Hardware Manager yielded a value of about 

15W. However, under normal usage, the board only requires about half of that figure. The 

worst-case power consumption figure is so large mainly because of the FPGA, which does not 

use all of its pins at one time. Based on this analysis, the input current to the Hardware Manager 

is limited to 3A by a resettable dc fuse. 

4.4 Testing 

Testing of the new Hardware Manager has been very positive in all aspects, with no major 

setbacks. Fig. 4-19 shows a picture of the new PEBB while running experimental tests. Errors 

included easily correctable, non-threatening cosmetic mistakes, such as small footprint 

inaccuracies. Board level tests have verified all components of the Hardware Manager. The 

waveforms shown in Chapter 5 show the PWM signals sent to the switches. They represent the 

midpoint of the IPM, and the control signals to the bottom and top switches. This small test 

verifies the operation of the driver circuit and PWM generator. 

The Hardware Manager was also tested in a single phase, dc/dc converter configuration, 

connected in a loop with a Universal Controller (please see Fig. 4-20 and Fig. 4-21 ). The 

resulting waveforms are shown in Chapter 6. This test enabled us to test the power stage (to low 

power levels), and all functions of the Hardware Manager, including communication. The duty 

cycle was sent from the Universal Controller via fiber. It was possible to change the duty cycle 

on the fly, and watch the Hardware Manager's immediate reaction. The Universal Controller 

received sensor information back from the Hardware Manager. 
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m 

Fig. 4-19 New PEBB module mounted on the removable slide featuring the Hardware 

Manager and main power connectors. 

Fig. 4-20 Universal Controller in loop with one PEBB 
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Fig. 4-21 Single phase dc/dc converter configuration 

Although this was a simple test, conducted at a fraction of the power capabilities of the 

PEBB, the results were very encouraging. This test showed communication can be established on 

the fiber link, and that the Universal Controller is able to send and receive data from the 

Hardware Manager. A fiuther test was executed with two phase legs (one new and one old) in a 

loop, in the following configuration: 

Phase Leg A 

t 

# 
(   Vdc \ ,AAA-WV' 

Phase Leg B 

/TN 

Fig. 4-22 Full bridge inverter configuration 
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4.5 Future Research 

The diagram in Fig. 4-23 shows the structure of the PEBB system, and all of its interfaces. 

Future research involving the Hardware Manager will concentrate on its interface with the switch 

(iy). For current power levels, less than lOOkW, the interface between the Hardware Manager and 

the phase leg has been defined and studied in this project. However, for higher power 

applications where single devices may be larger than the board itself, the Hardware Manager 

would not efficiently interface the PEBB. The structure of the current PEBB may need to be 

changed in order to accommodate higher power appUcations - so that it can be ever more 

flexible. Additionally, studies will concentrate on making the Hardware Manager independent on 

the switch used. If this interface is characterized and standardized fi-om both sides, the device 

used will no longer be directly related to the Hardware Manager, and vice-versa, as long as both 

are compatible with the interface. 

Changes that would make our PEBB more flexible include moving the high-frequency dc link 

capacitor and sensors away from the Hardware Manager. They would be fitted instead into their 

own separate intelligent modules (smart passives and smart sensors). These and other alterations 

would open way to a highly-desirable, multi-megawatt PEBB. 

Fig. 4-23. Interfaces of the Power Electronics Building Block (PEBB) 
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4.6 Conclusion 

The concept of the Power Electronics Building Block rests in the ideas of reliability, 

flexibility, and modularity. The PEBB allows design in power electronics to be done in a 

standardized manner, instead of custom design jobs. This leads to faster development time, easier 

troubleshooting, and lower costs. The Hardware Manager has been designed with all of these 

ideas in mind, in the way to becoming a true PEBB. It has achieved reliabiUty through the use of 

multiple on-board sensors and protection mechanisms (on top of system level protection), 

topology and power level independence, and partitioned design, both physically and in software. 

Future research on the Hardware Manager and the PEBB concept will strive to understand all of 

its boundaries, and thus expanding the PEBB definition, and how it applies to the Hardware 

Manager. 
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5 PEBB-BASED POWER STAGE 

5.1 FEBB Partitioning Studies 

Unlike modem digital technology, which utilizes an array of developed components or cells 

to build a system, modem power systems lack a high degree of integration and standardization. 

As a resuh, designers are often forced to build entire systems from scratch each time, which is 

costly in engineering time as well as system reUability. In order to remedy this situation, the 

concept of PEBB has been developed. These building blocks are integrated power modules 

serving a fiinction, which is commonly found in a wide number of power systems. Depending on 

the instmctions given to the controller, the PEBB can function as, for instance, a DC/DC 

converter, an AC inverter, a synchronous rectifier, or a motor controller. In fact, it can do any of 

these jobs interchangeably, depending only on the instmctions given to it. The goal of the PEBB 

development is to create a power-processing component that moves most of the design away from 

specific circuit topology consideration and power electronic switch and associated inductors, 

capacitors, and other ancillary component selection, up to a systems level. As PEBB modules can 

be connected together to form several power system topologies, greatly reduced design efforts as 

well as increased system simplicity and reliability are achieved. In addition, maintenance cost is 

reduced since individual modules are easily replaced and the number of stock spare parts is 

reduced. PEBBs can be also the best choice to minimize both the layout and packaging parasitics, 

because all the power semiconductor devices, control circuits, and the busbar will be integrated 

together as a large power device. 

To evaluate a fully functional PEBB two main fields must be investigated: identifying the 

PEBB topology for constmction of the more standard converter topologies and the applicability 

of distributed control to the muhi-cell topology, which includes the design of the communication 

link and controller hardware required for cell control. In particular, one aspect still need 

investigation is how to design, distribute and partition into PEBBs the hardware components 

usually present in customized power converters. 

5.2 Architecture of PEBB-Based Power Electronics Systems 

A power electronics system is a set of power processing devices governed by a control 

system that uses and produces the information about the operation of the power stage. Therefore, 
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that information-power characterization can be represented as a composition in a bi-dimensional 

space. With the power switch in the origin of coordinates the two dimensions extend horizontally 

and vertically as schematically shown in Fig. 5-1. With the information in the vertical dimension, 

the different levels of control authority build upon the controlled power units. The power is 

represented in the horizontal direction. Along that direction, the power components 

(semiconductors, passives and auxiliaries) exchange power between them and the power system. 

Previous works analyzed the PEBB in its information dimension and based on that proposed a 

distributed control architecture [xv]. 
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Fig. 5-1 General PEBB Architecture 

The PEBB is build upon two composing structures: one is related to the power management 

and is composed by the switching devices and the related passive and auxiliary components; the 

other is the control that manages the proper operation of the power equipment. The control 

structure basically process information related to the operation of the system while the power 

components actually process the energy. Therefore these two "dimensions" of the PEBB: energy 

and information can be arranged in a two-dimensional space as shown in Fig. 5-1. The vertical is 

the information dimension and can be analyzed like an OSA information network producing a 

layer characterization of the PEBB. In such layer classification, the power equipment belongs to 

the bottom layer with the different control levels build upon it. On the other side, the energy 

dimension characterizes that bottom layer and is horizontally represented in Fig. 5-1 along this 

dimension, the power equipment: semiconductors, passives and auxiliaries exchange power 

between them and the power system. The previous figure is only a conceptual representation of 

the PEBB in its basic characteristics because it exist quite a difference between the ways the 

power electronic systems handle the information and the energy. For example there is a 

significantly high interaction between the power system components and a layer partition does 
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not exist along the energy dimension. Nevertheless, there are also some similarities that will be 

shown in this work. 

5.2.1 Functional analysis and characteristics of the information flow in 

PEBB 

The functional characterization of the PEBB control architecture has already been proposed, 

Fig. 5-2 shows the PEBB figure of merit along the information dimension. 
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Fig. 5-2 Information capacity at the different levels of control 

Although the layers and interfaces are not clearly defined in the energy dimension, the system 

characteristics in such dimension can be analyzed following a similar path as the one used for the 

information. That analysis included a quantification of the information transmission capacity 

(Mbit/sec). In the energetic characterization the quantification is related with the amount of 

energy that the different components handle. This magnitude is not the power on the devices, nor 

their losses because there is no interest in an efficiency evaluation here. In general, the 

characterizing magnitude is the product of a voltage and a current. It can be a reactive power for 

passive components, but in some cases, as the power semiconductors, is the product of two 

magnitudes that are not present at the same time. 
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We can call the product of the V and I magnitudes used for the evaluation, the power 

capacity, or power merit. The proposed evaluation method is better clarified using as example the 

calculation of the power capacity at the different components in the PEBB. Power semiconductor 

devices: its capacity is evaluated by the required V inverse capacity, which is VU, and the rms 

value of the conducting current, Inns 

P = VU X Inns 

DC capacitor: it operates at the dc voltage level, Vdc, and is circulated in the permanent regime 

by the ripple current. Therefore its power merit is: 

P = Vdc X Icrms 

AC inductor: it is circulated by the converter line current, and the current ripple creates a voltage 

ripple at the inductor terminals. 

P = Vlrms X Irms 

AC capacitor: it operates at the line-line rms voltage, and although there can be a relatively large 

AC current, our interest is in the ripple current created by the operation at the switching 

frequency. Therefore 

P = VU X Icrms 

Auxiliary components: including protection devices, start or stop auxiliary circuits, etc. They are 

not operative during at the permanent regime; so the average power is comparatively low. On the 

other side, the power requirement during the operation is important. Therefore, it is necessary to 

distinguish between the average and instantaneous requirements, but both are relevant for the 

evaluation. Fig. 5-3shows the evaluation of the power capacity of the components of a phase leg 

that has the following nominal characteristics (taken form PnP project): 

rated power      P=33kW 

Dc link voltage Vdc=800V 

switching frequency      fsw=20kHz 

Ac side main frequency fac=60Hz 

line to line rms voltage level      V11=480V 

Ac rms current I1=120.3A 

Ac peak currentIlpk= 170.1 A 
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* average pow er ■ - instant pow er 

Fig. 5-3 The energy figure of merit (similar to something?, ha) The abscissa refers to: 1 

semiconductor devices, 2 DC capacitor, 3 line inductor, 4 line capacitor, 5 other auxiliary 

components 

5.2.2 Physical boundaries of the PEBB 

The useful concept of PEBB imposes some challenges on its technological implementation 

enabling a widespread use in practice. One of those challenges is on finding the physical 

boundaries of the PEBB. The calculation procedure of a PEBB involves the evaluation of the 

electric requirements of the system components for all the possible applications. This evaluation 

is necessary for dimensioning and selecting the semiconductor, passive, and auxiliary devices. In 

that procedure, it is observed that while some applications impose a large requirement on a 

component, another one may not even require the use of such a component. This shows the fact 

that there exists some power capacity in the different components of the PEBB that is not fiilly 

used through the different applications. We can evaluate such non-usable power capacity at a 

particular component as the difference between the maximum and minimum capacity 

requirement. Exemplifying, the semiconductor devices are usually required to be fully utilized in 

all the applications while the AC inductors are not required for some of them. Moreover, we can 

refer the mentioned unusable capacity to the maximum requirement, usually the value adopted for 

construction, and express it as a percentage. This is shown in Fig. 5-4 (in magenta) as well as the 

combination (in blue), by multiplication, of the power merit (in yellow) and the percentage of 
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unusable power. That blue line represents the amount of power capacity that is non-usable at the 

different components of the PEBB. 
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Fig. 5-4 Calculation of the unusable power. Yellow: power merit at the different 

components; magenta: percentage of non-usable capacity; blue: product of the previous 

two magnitudes giving the non-usable power at the system components 

The concept of the imusable power capacity can be employed to set (or at least to discuss 

about) where the boundaries of the PEBB in the energy dimension must be. Cost considerations 

prevent from having a lot of non-usable power on any power system. For the PEBB construction 

this means that if a component non-usable capacity is large, it is probably worth to not include it 

in the PEBB and add it only for those applications where it is required. Therefore, there is a hmit 

for such unemployed power capacity. Components with an unusable power capacity below such 

limit are probably to be included in the PEBB and the ones above the limit are to be considered as 

auxiliary equipment added in case the appUcation requires them. The described idea is 

represented in Fig. 5-5. The limit of imusable power capacity is arbitrary and chosen based on 

technical-economical considerations. The proposed idea is consistent with existing practices of 

power electronics module construction. For small power applications, the affordable un-usable 

capacity is comparatively large (the relative position of the Umit line in the chart is high) and the 

PEBB includes a lot of power components. For large power applications, the limit of unusable 

146 



capacity (placed relatively low in the chart) will leave out of the PEBB almost all devices, and in 

such cases the PEBB includes only the power semiconductors. 
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Fig. 5-5 Non-usable power characteristic and PEBB boundary based on the limit of 

affordable non-usable capacity 

5.2.3 Control Characteristics of Power Electronics Systems 

The information dimension in a power electronics converter is characterized mainly by the 

functional and temporal requirements of the control system. The functional requirements are all 

the control functions that the system needs to do in order to achieve its desired operation given its 

configuration. On the other hand, the temporal requirements mainly address the relation amount 

of information-time, measured in Mbit/sec, at the different parts of the control system given the 

operation requirements like switching frequency and modulation. 

The analysis of different control functions required in a power electronics system shows a set 

of common functions at the low control authority level and an increased differentiation when 

growing in authority level. This is general and vahd in the wide range of power conversion 

systems. As an illustrative example a functional analysis of typical applications for utility systems 

is shown in Table 5-l[xvi][xvii],[xviii]. 

On the other side, the evaluation of the information flow along the different control stages 

shows a large capacity requirement close to the power conversion that becomes smaller when 

moving away from the energy conversion components. The characteristics from this functional- 
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temporal point of view make the power electronic systems appropriate for implementation of 

distributed control architecture. In [xix], such kind of architecture is proposed; it also has three 

levels of authority: hardware manager, local controller and system controller. In a more general 

sense, a power electronics system has different layers with different functions and characteristics. 

A system buiU by combination of building blocks constitutes then a network of such blocks that 

operates under a distributed control system with layering characteristics. Therefore, systems built 

on PEBB can be matched with the OSI network standard; this new vision enhances the previously 

proposed architecture. 

5.2.4 PEBB Stage Characteristics 

From the hardware point of view, the PEBB concept establishes that its composition includes 

a set of components common to that PEBB range of applications, which is intended to be as wide 

as possible. Therefore, in addition to the power-devices, the building block incorporates passives, 

auxiliary components, and a set of low-level control functions common to many applications. 

A review of medium and high power converter topologies shows two families of widely used 

phase leg structures. One is the phase leg composed by two active switches with its respective 

anti-parallel diode (scheme A in Fig. 5-6). It can be used in AC/DC, DC/AC, and DC/DC 

converters, such as boost rectifier, two level and multi-level voltage source inverter (VSI), and 

full/half bridge converter. The other commonly used phase leg consists of two active switches 

with diodes in series with each of them (scheme B in Fig. 5-6); it can be configured as buck 

rectifier or current source inverter. Other phase leg variants are shown in schemes C and D in Fig. 

5-6. The proper operation of the discussed topologies requires the presence of voltage or current 

source characteristics at the different switch terminals. Therefore, capacitors or inductors must be 

connected at the proper terminals to complete the basic switching cell. Auxiliary elements like 

overvoltage protections or connection switches may also be included. 

The PEBB is completed with the inclusion of the components necessary to do a set of low- 

level fimctions that include signal power amplification, level shift, isolation, protection and 

diagnostic functions. These components are the gate drivers, transducers, A/D converters, and 

optical and communication interfaces. A local controller (hardware manager) is then attached to 

the power-switching cell to accomplish and supervise these functions. In the system being 

developed these functions are handled by means of a FPGA that also handles the communication 

to and fi-om higher-level control and other PEBBs. In this sense, the PEBB functions as a 

computer-controlled power-switching unit or a power processor. 
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Table 5-1 Functional Analysis of some power electronics applications in utility systems 
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- Load flow control 

- Transient Stability 

enhancement 

- Power oscillation 

damping 

- Voltage support 

- Reactive compensation 

- Transient stability 

enhancement 

- Power oscillation 

damping 

- Sag mitigation 

-Voltage regulation 

- Energy storage 

administration 

- Connection by-pass 

- Short circuit current 

limitation 

- Connection / 

disconnection 

Control 

- Synchronization 

- Voltage (or Z) control 

- Firing angle 

computation 

- Synchronization 

- Current Control 

- Vdc control 

- Duty cycle computation 

- Synchronization 

- Voltage control 

- Current control 

- Vdc control 

- Duty cycle computation 

- Synchronization 

-1, dl/dt control 

- Firing angle 

computation 

Conversion 

- Switching control 

(modulation control) 

- Pulse gating 

- Safe commutation 
enabling (dv/dt, di/dt limit) 

- Primary device 

protection 

- Power inagnitudes 

sensing and 

conditioning 
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Fig. 5-7 Interfaces of the Power Electronics Building Block (PEBB) 

5.3 PEBB-Based Power Stage Developed 

The power stage of the integrated hardware/software PEBB system envisioned by the PnP 

concept is shown in Fig. 5-7. The main goals sought by adding plug and play capacity to the 

PEBB modules are to allow for easy reconfiguration providing great modularity, and improved 

accessibility for service and maintenance. Among the desired features is hot swappable control 
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and communications for true PnP control software. This goal basically considers the spatial 

distribution of the PEBB modules, as their placement within a constraint space will allow or not 

to attain the easy reconfiguration. This basically calls for a mechanical design effort, which we 

approached in the following way. 
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Fig. 5-8 Power stage subsystem of the Plug and Play demonstration system. 

Fig. 5-8 shows the PnP System structure proposal, featuring a functional, temporal and spatial 

distribution partitioning. The power stage itself encompasses all 3 dimensional distributions, the 

spatial being perhaps the most complex given the direct interaction of all power components, 

PEBB, busbars, contactors, protection devices, etc. In a conventional converter these elements are 

fixed, but for the PnP approach, with distinctive separate elements it becomes significantly more 

intricate to come up with a clean, modular solution. Think only in the complexities associated to 

reconfigure the converter module as shown in the different topologies depicted in Fig. 5-9 . In 

these topologies particularly we defined PEBBs as the common element within the voltage source 

topologies under study. From observing the vast majority of high-power topologies these element 

turned out to be a phase-leg, two IGBT connected in series forming a single-pole double-throw 

switch. This basic building element solely considers the converter switching action, with whom 

however  all  existent  topologies  may be built  directly  using  the  proposed PnP  System 
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Architecture, the PNC 3-level is the only one that requires further development as its basic 

switching element is now comprised of two PEBBs, which must operate under strict 

synchronization to operate properly (PESNet). 

The PEBB concept as such provides the means to simplify the power processor, switching 

element interconnection, however the converter structure is composed as well by bus bars, 

filtering elements, contactors and protection devices, dc-link bus with caps or batteries in UPS 

systems, not to mention communication buses, low power distribution for control systems, and 

cooling, forced air or any other depending on the power rating. Consequently, the converter still 

remains a fairly structured system, and actual reconfiguration still demands more than simply 

reordering some modular blocks. 

Single-Ended 

HT^C 

7 

I 

I 
7 

I 

7 

I 
Three-Phase 

Half-Bridge 

7 

I 

^ 

L 

7 

L 

7 

1 

7 

L 
Multi-Phase 

Full-Bridge 

^ 

L 

y 

L 

Multi-Level 

Fig. 5-9 PEBB-based topologies for the Plug and Play power system. 
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Fig. 5-10 Power system schematic partitioning of the different components pertaining 

to the Plug and Play physical structure system. 

With this in mind we redesigned the converter cabinet structure so that it would have such an 

organization that would allow taking the PEBB concept a step further, by identifying passive 

PEBB modules within, as could be ac inductors with integrated protection, sensors, contactors, as 

well as capacitors with the same features. This is shown in Fig. 5-10. What follows is a more 

detailed presentation of the design of each of these components. 
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Fig. 5-11 The original fixed-ball bearing slides used to mount thie phase legs were later 

replaced by removable single slides for ease of operation. 
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Fig. 5-12 Frontal view of cabinet. 

5.3.1 Semiconductor Device Selection and Heat Sink Design 

The electric characteristics of the applications for the phase-leg under investigation are as 

follows: 

rated power P=100kVA; 

dc link voltage Vdc=800V; 

switching frequency fsw=20kHz; 

ac side main frequency fac=60Hz. 
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Assuming VU = 480V as line to line rms voltage level, the rms and peak values for the ac current 

are: 

ac rms current  I1=120.3A; 

ac peak current Ilpk=170.1A. 

When a maximum peak-to-peak ripple of 25% with respect to ac peak current is considered, the 

maximum current flowing through the power switch becomes: 

ac max current Ilm=191.36A. 

On the basis of the reported values, the selection of the power devices for the phase leg should be 

carried out in the 1200V - 300AIGBT range. Three different options are here considered for the 

IGBT module selection: dual module IGBT, dual intelUgent power module (EPM) IGBT, six-pack 

intelligent power module (IPM) IGBT. The third option is to be accomplished by arranging in 

parallel connection both the top switches and the bottom switches, this option has been 

considered because the six-pack IPM IGBT is more commonly product than the dual IPM IGBT. 

However, parallel coimection of IGBTs is critical concerning about static and dynamic current 

balance among the paralleled devices; then further recommended current deratings of 15-20% 

should be applied. 

The dual module IGBT usually requires 2 optoisolators, 1 gate driver, 1 booster 

configuration, and 2 isolated power supply voltage levels in order to drive each switch (Fig. 

5-13). The gate driver can be either the hybrid gate driver suggested and produced by the same 

company of the selected IGBT or a IGBT universal driver (MC33135). However, the MC33135 

and similar components, desirable in order to design a more general purpose drive board, accept a 

maximum voltage level equals to 20V thus allowing a negative voltage supply Vee=-5V (the 

positive voltage supply must be set at Vdd=15V); whereas the manufacturing companies suggest 

to provide Vee=-10V (-5V<Vee<-15V) in order to minimize turn-off switching energy. The gate 

drive scheme accomplishes the short circuit protection (by means of the de-saturation voltage 

circuit) and fault detection, providing the fault signal f In order to reduce the number of supply 

voltage levels (and then the number of dc-dc converters), Vdd and Vee could be arranged in 

floating point configuration. 
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Fig. 5-13 Dual Module IGBT Gate Drive Circuit 

The gate drive circuit for each switch of an EPM configuration is shown in Fig. 5-14. In this case 

neither external gate driver nor booster circuit are needed, as well only 1 power supply voltage 

level (+15V) is required. IPMs have built-in protection circuits that prevent the power devices 

from being damaged should the system malfunction or be overstressed. 
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Fig. 5-14IPM IGBT Gate Drive Circuit 

Fault detection and shut down schemes that allow maximum utilization of power device 

capability without compromising reliabihty have been developed. Control supply under-voltage, 

over-temperature, over-current, and short-circuit protection are all provided by the IPM's internal 

gate control circuits. A fault output signal f is provided to alert the system controller if any of the 

protection circuits are activated. The short-circuit protection uses actual current measurement to 

detect dangerous conditions. This type of protection is faster and more reliable than conventional 

de-saturation protection schemes. 

On the basis of the previous descriptions and comments on IGBT modules and gate drive 

configurations it seems to be reasonable the choice of the dual IPM IGBT for the application 
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under investigation. A research on power semiconductor devices throughout the web-sites of the 

major companies put on evidence that only Powerex-Mitsubishi and Toshiba produce dual IPMs 

in the 1200V - 300A range. Thus, the components PM300DVA120 (Powerex-Mitsubishi) and 

MIG300Q101H (Toshiba) are considered in the following in order to design the cooling system. 

5.3.2 Power Losses 

The total power losses in the power semiconductors of a phase-leg are composed of 

conduction and switching losses. Conduction losses are the losses due to the device's conduction 

characteristics. The conduction losses are a function of the currents in each particular device and 

that device's dc electrical characteristics. The switching losses are a function of the switching 

frequency, the current in each device, and the device's dynamic characteristics. 

The design of the phase-leg under investigation should be accomplished in order to allow the 

building of several converter topologies (at the same power rating) and the adoption of different 

modulation techniques. The switch and diode current, and thus the power losses, depend a great 

deal on the modulation techniques used for the selected application [4]. For sake of generality, 

continuous modulation (CM) techniques are preferred for the phase-leg power losses 

determination as discontinuous modulation (DCM) techniques (as dc-bus clamping) provide a 

reduction of the switching power losses (even if higher distortion concentrated in the tops of the 

waves partially denies this advantage), whereas the conduction losses are almost the same of CM 

techniques. 

In the present report, data-sheets based methods for calculations of power losses are 

considered; extensions of these methods can be used in case of multi-level power converter 

configurations. When experimental testing and measuring system are available, extended models 

based on extraction of parameters can be used. 

5.3.2.1   Conduction Losses 

In order to simplify the calculation of switch and diode currents, the ac phase current can be 

assumed to be sinusoidal and the switching frequency is assumed sufficiently higher than the ac 

fundamental frequency. Equations for the average and RMS switch and diode currents are derived 

based on a quantitative analysis of the current waveforms. Conduction losses in the 

semiconductor devices are then approximated using a piece-wise linear approximation of the 
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device's on-voltage characteristics. The typical IGBT voltage/current graph Vce/Ic is 

approximated by the following linear equation: 

P _ ^CEn -^CEO 
^on-s j 

where VCEn and ICn are the rated (manufacturers catalogue) current and the collector-to-emitter 

voltage at the rated current, whereas VCEO is the threshold voltage. At the same way, the diode 

forward voltage characteristic can be approximated by means of a linear law with the origin at the 

threshold voltage VFO: 

^CEn~^CEO 

where VFn is the diode voltage drop at rated current. 

The following equations define the conduction losses for phase-leg switches and diodes: 

Pon-s = ^av-s " '^C£0 + ^on-s ' ^RMS-s 

Pon-d = ^av-d ' ^FO + P^on-d ' ^RMS-d 

where lav, IRMS and Ron are the average current, the RMS current and the conduction resistance 

of respectively the switch (s) and the diode (d). 

The phase current for 3-phase applications usually lags the phase voltage by the phase angle (p; 

because the current is assumed a simple sine function, the math works out to be easier if we 

define the voltage leading the current by <p and integrate over the current waveform. The ac phase 

current, the duty cycles of the phase-leg top switch and bottom diode are defined according to the 

following equations (under constant firequency conditions): 

h=hpkSine 

d,=--\i + Msin{e-^(p)] 

da=\-d, = '^\\-Msin[9 + (p)] 
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where M is the modulation depth (represent the normalized voltage and is between 0 and 1) and 9 

is the phase angle. At full modulation the duty cycle varies from 0 to 100%. 

Assuming the switch current is fairly constant over one modulation cycle, the average current 

over that cycle is the current times the duty cycle. The average switch current is calculated over 

one half of the full sine wave and can then be found by integrating the current times the duty 

cycle. The reason for averaging the switch current over one half of the period is found in the 

estimating the device junction temperature rise. Li fact, for applications in which devices are 

completely off (and then they don't produce power losses) for half a period, each device can be 

approximated to be subjected to a long train of equal amplitude (half a period) load pulses; then, 

the transient thermal impedance should be considered in order to calculate the device's over- 

temperature over each half a period. Thus, the function ac phase current times the duty cycle is 

integrated from 0 to Ji and then divided by n: 

TV IK 

thus resulting 

^av-s - hpk 
^1     Mcos^^ 

^K            4       ) 

Similarly, for the diode it is found: 

lav-d - hpk U         4     J 

The RMS current is found by first squaring the current, then integrating and taking square 

root of the resultant. The RMS value of a pulse waveform is found by squaring the amplitude and 

integrating over the on time, therefore the duty cycle is not squared. The switch RMS current is 

^RMS-s = j-]if-d, de =itpA-y\{m^e{\+Msm{d+(p%de 
V ^ 0 F^ 0 

and then 

_        11    2-Mcos(p 
IRMS-S - hpk -\| 4 +      ^^ 

In the same way, it is found for the diode: 
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^RMS-d - hpk 
1    2-Mcos(p 
4 ^Tt 

The average and RMS values for the bottom switch and top diode are the same. The 

equations for average and RMS currents are a function of (p; setting (p equal to 0 and M equal to 1 

will maximize the switch current and minimize the diode current. 

If sine modulation with the 3rd harmonic is considered, then it is foimd: 

'cos^ 
^av-s      ■'Ipk 

(\     S-M ^ 

^av-d      -^Ipk 
yTt 6 

J 

COS(p \ 

^RMS-s -hpk^ 
'1 

+ 2-M 
30 cos ^-cos 3^ 

ASS-Tt 

1 30 cos ^-cos 3^ 
iRMS-d-hpkj-^-'^-M--       ^^^_^ 

5.3.2.2   Switching Losses 

Switching loss is the power dissipated during the turn-on and turn-off switching transitions. 

In high frequency modulation, switching losses can be substantial and must be considered in 

thermal design. The most accurate method of determining switching losses is to plot the IGBT 

current and voltage waveforms during the transitions. Multiply the waveforms point by point to 

get an instantaneous power waveform. The area under the power waveform is the switching 

energy expressed in Joule/pulse. There are pulses of power loss at turn-on and turn-off of the 

IGBT. The instantaneous jimction temperature rise due to these pulses is not normally a concern 

because of their extremely short duration. However, the sum of these power losses in an 

application where the device is repetitively switching on and off can be significant. In 

applications where the phase current is changing in a sinusoidal fashion the IGBT current and 

duty cycle are constantly changing making loss estimation quite difficult. Switching losses are 

divided into IGBT and diode turn-on and turn-off loss. Switching losses in diodes are normally 

lower than switching losses occurring in IGBTs, it is also known that the turn-on losses in diodes 
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are relatively small, therefore they are usually neglected [4, 14]. Assuming constant switching 

frequency and constant voltage Vdc across the top switch collector and the bottom switch emitter, 

the following equations can be used for initial loss estimation; however actual losses will depend 

on temperature, sinusoidal output frequency, output current ripple and other factors. 

Psw-s = {^on + Eoffj- fsw • — \h 'd^ = ~ \^on + ^^ff )■ hpk ' fsw 
TT f\ TT 

1 ^ 2 

K Q n 

where Eon and Eoff are respectively the IGBT turn-on and turn-off energy per pulse and per 

Ampere (at the working Vdc), and Err is the diode reverse recovery energy per pulse and per 

Ampere. 

Should be information about devices' transient energy per pulse and per Ampere not 

available on manufacturer's catalogue, the following expressions can be used instead of (15, 16): 

■•sw-i ~       ' dc ' ^Ipk ' Jsw Kc-on "*" ''c-off I 

"rr ~ T' 'dc ' ■'rr ' Jsw ' ^rr 

where tc-on and tc-off are respectively the turn-on and turn-off IGBT crossover times, trr is the 

diode reverse recovery time, and Irr is the diode peak recovery current. In any case 

manufacturer's data taken at Tj=125°C should be used. 

The total power losses per IGBT and per diode result respectively: 

P =p      +p ■' s        on-s  ' ^ sw-s 

P   =. P 4- P ^d     ^on-d ~'■rr 

By considering the data-sheet information shown in Tab. 1, the values shown in Tab. 2 (the 

switch current is maximized and then cp is set to 0 and M to 1) are found for the components 

PM300DVA120 (Powerex-Mitsubishi) and MIG300Q101H (Toshiba) [16, 17]. Unfortunately, 

MIG300Q101H data-sheets are not exhaustive and most of the information are obtained by 

interpolating curves  from lower current EPM  Toshiba components  (MIG150Q101H  and 
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MIG200Q101H); as a consequence, for this component power losses calculation (and then 

cooling system design) is less accurate. 

Table 5-2 IPM Components Data 

VcEn 
(V) 

VCEO(V) Ic„(A) VF„ 
(V) 

VFO(V) Eon 
(mJ/pulse) 

Eoff 
(mJ/pulse) 

E„ 
(mJ/pulse) tc.on(HS) tc-ofr(^s) ini\is) I.(A) 

PM300DVA120 2.75 1.1 300 2 0.6 0.1 0.2 / 0.2 0.48 0.1 200 

MIG300Q101H 2.7 1.1 300 2 0.7 / / / 0.39 0.3 0.12 200 

Table 5-3 Power Losses 

lav-s(A) lav-d (A) IRMS-S(A) iRMS-d (A) Ro„-s (mQ) Ron-d(nii2) P„„-s(W) P„„-d(W) Psw-S (W) Psw-S (W) P„(W) 

PM300DVA120 96.7 11.65 115.66 33 5.5 4.67 180 12 650 590 80 

MIG300Q101H 96.7 11.65 115.66 33 5.3 4.3 177 12.8 / 598 96 

5.3.3 Cooling System Design 

On the basis of the power losses calculated as shown in the previous paragraph the phase-leg 

heat-sink can be designed. The design of the heat-sink for the present application is carried out by 

considering the equivalent thermal circuit of Fig. 5-15. The junction temperature Tj should not be 

higher than 125°C, whereas the ambient temperature value Ta depends on the adopted cooling 

system. When forced air cooling is chosen the ambient temperature is set at 30°C, in case of 

liquid cooled heat-sink Ta is equal to 15°C or even lower. Tc is the case temperature and for 

IPMs it should not be higher than 100°C in order to avoid the disabling of the device for over- 

temperature protection. 
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Fig. 5-15 Phase-Leg Equivalent Thermal Circuit 

In Fig. 5-15 Pst=Ps, Pdb=Pd and Psb=Pdt=0 in the first half ac phase period, whereas Psb=Ps, 

Pdt=Pd and Pst=Pdb=0 in the second half ac phase period. Assuming that the maximum over- 

temperature is found on IGBTs and not on diodes, it resuhs [7] 

AT 
j-c 'Z^ths-jc '^'Z^ths-jc ~^ths-jc '^^ths-jc -P    R^l 

where Rths-jc is the steady-state thermal resistance (0.09°CAV for PM300DVA120, 0.078°CAV 

for MIG300Q101H), R'ths-jc is the transient thermal impedance at l.STac - Tac is the ac phase 

main period - (0.045°CAV for PM300DVA120, 0.03°CAV for MIG300Q101H), R"ths-jc is the 

transient thermal impedance at Tac (0.036°CAV for PM300DVA120, 0.022°CAV for 

MIG300Q101H) and R"'ths-jc is the transient thermal impedance at 0.5Tac (0.027°CAV for 

PM300DVA120, 0.018°CAV for MIG300Q101H). The maximum values of the data sheet 

thermal resistances have been considered. 

From the equivalent thermal circuit of Fig. 5-15 and Table 5-3 values it is found: 

(°CAV) 
ATj-c (°C) ATc-h (°C) Rth-ha CCfW) 

[air cooling] 
Rth-ha °CAV) 
[water cooling] 

PM300DVA120 0.0585 45 25.9 0.028 0.045 

MIG300Q101H 0.05 38.8 26.5 0.033 0.050 
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The forced air cooling system is designed in order to achieve Rth-ha = 0.03°CAV. The water 

cooling system is designed in order to achieve Rth-ha = 0.04°CAV; then comparisons between the 

two different cooling systems are provided focusing overall dimensions and costs. 

5.3.3.1   Forced Air Cooling System 

On the basis of the previously fixed specifications the following products were found for the 

forced air cooling system: 

Table 5-4 Forced Convection Heat-Sink 

Manufacturer Part Number 
Length 
(mm) 

Width 
(mm) 

Height 
(mm) 

Air-Flow   Speed 
(m/s) 

Price 
($) 

AAVID [18] 4200 34 U 8 1000* 254 133.35 140 5.7 

AAVID [18] 4200 34 U 8 1200 305 133.35 140 4.5 

R-THETA 
[19] 

MFP305T13A36AS 
049D 

305 127 127 4.5 

R-THETA 
[19] 

MFP254T13A36AS 
049D* 

254 127 127 5.7 

R-THETA 
[19] 

MF203T13A58AS0 
49DL 

203 203 64 3.5 

R-THETA 
[19] 

AF203T13A37AS0 
91DL 

203 206 104 3.5 

PADA [20] LP6D 144/200** 200 144 134 6 62 

PADA [20] LP6D 240/100** 100 240 134 6 64 

WAKEFIELD 
[21] 

BE8556 10 U 9F 254 152 140 5.7 

WAKEFIELD 
[21] 

BE8545 08 U 9F 203 203 140 3.5 

(*) no standard product 

(**) VAT included 

As concern the fans to be used for supplying the cooling air flow, different options can be 

chosen from product catalogues. In the following are shown some examples: centrifugal blowers 

and axial fans seem to be the most suitable alternatives for the investigated application. The 

centrifugal blower and the axial oval-shape fan are characterized by the highest air-flow speed 

(the centrifugal blower has a small cross sectional area of the outflow air passage, whereas the 

axial oval-shape fan has high output volumetric flow rate), and then they can be used to provide 
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air flow speed up to 6 m/s. However, the centrifugal blowers require, on their inflow side, enough 

air volume and distance from other objects in order to achieve rated performance; whereas the 

axial oval-shape fan has a cross sectional area which fits only the highest heat-sinks of Table 5-4. 

The axial square-shape fans are manufactured in several sizes and then they can be easily 

mounted on each heat-sink of Table 5-4; however, when the required air-flow speed is higher 

than 5 m/s two fans must be used in either parallel or push-pull configuration depending on the 

heat-sink overall dimensions. 

Et3 
OiMBISIOtJS - liwws fern) 

RMtTNUMBER     ABCD      6      fOH 
OiGIM 6» 7.48 »JS 3.23 4.63 3.«* «.?? tM 

<174HlM!!8«)f«S   ("5! i'O") W CMJ 

!       JK       LMNOPD 
zm  1.W i.it   a,M H4     ,88 9.M 6.80 )?,78 
p«) (50| m (m      m tm mn <«) 

A) G2G085-AB04-10 Centrifugal Blower ($ 140.70) 

B) 5212NH Axial Square-Shape Fan ($ 68.20) 
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C) 6412M Axial Oval-Shape Fan ($ 116.20) 

5.3.3.2   Water Cooling System 
On the basis of the power losses calculation, the found value for the thermal resistance of the 

liquid plate and the available product catalogues, the following specifications were established for 

the water heat-sink: 

Length 180 mm 

Width 127 mm 

Max Water Flow 5.7 1/min 

The following product were found: 

Table 5-5 Water Cooled Heat-Sink 

Manufactur 
er 

Part Niunber 
Length 
(mm) 

Width 
(mm) 

Tube  OD 
(mm) 

Water Flow Rate 
(1/min) 

Price 
($) 

AAVID 418101U00000 178 197 9.5 1.5 

AAVID 416501U00000 178 127 9.4 1.5 

LYTRON CP10G14 152 89 9.5 1.5 65 

WAKEFIE 
LD 

180-12-6C 152 197 9.5 2 

WAKEFIE 
LD 

180-20-6C 152 140 9.5 2 

R-THETA 
AA180TB120D2C55 
* 180 120 7.9 3 

R-THETA 
AA152TB152D4C55 
* 152 152 7.9 3 

PADA** 
Superplate 
127x15/180** 

180 127 10 3 60 

(*) valves included (**) VAT included 
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Either parallel or series connection of the phase-leg Hquid plates have been investigated. The 

series connection allows an easier mechanical design but a lower cooling efficiency than the 

parallel connection. In fact, the inlet water temperature of the last liquid plate to be cooled in a 

series cormection is significantly higher than the temperature of the chiller outlet water; this 

means that in order to cool enough the last liquid plate the other ones (particularly the first liquid 

plate) are cooled in excess. 

The parallel connection is a real flexible configuration and it allows us two options in the 

selection of the chiller: 

1 chiller for the whole cooling system (Lytron RC030, 543x705x787 mmS, $ 5,545.00) 

1 chiller for each liquid plate (Lytron RC006, 318x483x559 mm3 each, $ 2,550.00each) 

In the parallel connection the liquid plates should be provided with pipe connection elements and 

valves in order to allow a flexible parallel connection configuration of more (3 - 4) hquid plates, 

thus the layout of Fig. 5-16 is obtained. 

Inlet Water 

127 mm 

180 mm 

H i 
Outlet Water 
 >— 

Pipe Connector 
+ Valve 

Fig. 5-16 Liquid Plates: Parallel Connection Configuration 

5.3.3.3   Considerations on Cooling System Power Supply 

Whichever forced air or water cooling system is chosen, power supply for fans and chiller 

must be provided. Fans for air cooling system can be either dc (12-24-48 V) or single phase ac 

(115-230 V) type; chillers for water cooler are supplied by single phase ac power net. In case of 

dc voltage fed fans, a dc/dc converter can provide the power directly from the phase-leg dc link; 
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in this case, external electrical connections for the cooling system are not required. In addition, 

chillers have usually power consumption higher than fans. 

5.3.4 DC-Link Capacitors 

In 3-phase power electronic converters the dc-link capacitor tank is sized in order to Umit the de- 

link voltage ripple: 

S-{\-M)-M-lLrms 

where AVpp is the peak-to-peak dc-link voltage ripple, Ilrms is the rms value of the ac-phase 

current, fs is the switching frequency, C is the total capacitance of the tank and M is the 

M = Vu h IVdc 
modulation index (defined as ^ '        , VUpk is the peak value of the line-to-line voltage 

and Vdc is the dc-link voltage value). 

However, the rms value of the ripple current in the dc-link capacitor must be also considered 

during the design: 

= IT^. -AM ^Crms     ^Lrms ' 
1 2     r4    3   ,^^ 
—-i-cos^- M 
n \7t   1     j 

where Icrms is the ripple current in the capacitor tank and cos(p is the displacement power factor. 

Eq. (1) and (2) reach their maximum value for M=0.5 and cos(p=l. For Vdc=800V, Ilrms=125A, 

fs=20kHz, AVpp=l%Vdc it is found C=240uF, Icrms=81A. 

Simulations in Saber have been carried on to verify the found theoretical values. 

3-Phase PFC 
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Fig. 5-23 DC-Link Capacitor Current: zoom 

5.3.5 DC-Link Bus Structure 

As shown in Fig. 5-10, the first version of the dc-link bus structure employs busbars to 

implement the positive and negative rails. This approach however has proven to be inadequate 

and shall require significanat modifications in the fiiture. This work will be part of the recently 

started new project. As shows Fig. 5-24, the back of the cabinet consists of a series of busbars 

that transverse it longitudinally. The distributed structure though of the PEBBs increases 

significantly the parasitic effects in the converter, hence parasitic inductances are high enough 

that they effectively diminish the capacitance of the DC bus. This negative effect was reduced by 

distributing the dc-link capacitors along the DC busbars, thus eliminating the actual capacitor 

bank by placing the caps directly behind each PEBB connector. 

In the fiiture however the parasitics problems not addressed before will be fiarthered and 

studied. In fact it has already been determined that a planar structure where the positive and 

negative busbars actually form a now parasitic capacitance should be the ideal approach and 

solution. These busbars are closely positioned and properly isolated using Kapton. Future work is 

required though to effectively design these new dc-link planes. 
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Fig. 5-24 PEBB, sliding rails, dc-link connectors and busbars of the cabinet under 

construction. 
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5.3.6 AC Inductors and Capacitors 

In three-phase power electronic converters the ac-phase inductor is sized in order to limit the 

ac current ripple: 

ML,,=^^-{\-M)-M 
^■L-f, 

where AIlpp is the peak-to-peak ac current ripple and L is the inductance value of the phase 

inductor. 

The ac-phase capacitor is sized in order to limit the ac-phase voltage ripple: 

^VLPP=- 
A/ Lpp 

^' Js '^ac 

where AVlpp is the ac-phase voltage ripple and Cac is the capacitance value of the phase 

capacitor. 

For AIlpp=20%Ilpk (34A) and AVlpp=^2%Vl (5.54V) it is found L=186uH, Cac=75uF 
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Fig. 5-30 Closeup view of the AC inductors positioned beneatli the fans in the 

cabinet. 

5.3.6.1   Inductor Design 

Design input parameters: 

inductance value L; 

rated peak current (ILpk) and rated rms current (ILrms); 

operating frequency (fs); 

In order to carry on the design of the inductor the following expressions are considered: 

'e~-^e''e~ 
Mo^-^hpk 

B pk 
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N^.^'^'^P^ 
"^e'^pk 

A-u, — '■w 

'^cu ' "^ Lrms ' ^e ' "pk 

where Ve, Ae, le and |a,0|X are respectively the volume, the cross section, the path length and the 

magnetic permeability of the material in which the magnetic energy is stored; Bpk is the peak 

flux density in the core; Aw, N, kcu and JLrms are respectively the required winding area, the 

number of turns, the fill factor and the current density considered for the inductor winding. 

The core material is chosen on the basis of the operating frequency; thus, the value of Bpk 

and the magnetic permeabiUty are found from data-sheet of the selected material. The core size 

closest to the resuU is chosen among the options available on the market; then, by using the 

previous equations the actual values of Bpk, N, L and Aw are known. For the current design 

Metglass material is chosen and the following values are used in the previous equations: 

L=185uH, ILrms=125A, JLrms=4A/mm2, Bpk=1.2T, kcu=0.5 

Selecting the core AMCC-400 it is found: 

Ae=l 1.7cm2, le=5.4mm, N=26, L=184uH, Aw=16cm2 

The required copper foil section is 

Scu=62.5mmx0.5mm. 

5.3.6.2   Selected Capacitors 

dc-link capacitor for each phase-leg: electronic concepts UL31BL356K, 1000V-35uF; 

additional dc-link capacitor: electronic concepts UL30BL0085, 1000V-85uF; 

ac-phase capacitor: electronic concepts 5MPA2606J, 530VAC-60uF; 
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Fig. 5-31 AC capacitors view inside tlie cabinet. These are directly positioned and 

connected to the output terminals of the AC inductors. 

180 



5.3.7 Contactors, fuses, and power connectors 

The contactors and fuses were placed according to the scheme shown in Fig. 5-32, a view of 

the final mounting in the cabinet is shown in Fig. 5-33. The high power connectors were placed 

as shown in Fig. 5-34. 

-HJ I C-l I 

n^ 
F-C[] 

Phase-Leg 1 Phase-Leg 2 

I 
Phase-Leg 8 

Cl| I C2I I C8| 

Fig. 5-32 Contactors and fuses scheme for the experimental prototype. 

F8l 
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Fig. 5-33 Closeup view of the contactors, fuses and control power connectors. 

Fig. 5-34 View of the power terminal blocks at the bottom of the cabinet structure. 
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5.3.8 Investigation on Soft-Switching Circuit Topology 

It is well known that the zero-current-transition (ZCT) technique is attractive in high-power 

inverters and power-factor-correction (PFC) rectifiers, where the minority-carrier devices, such as 

IGBTs, are the power switches. The basic concept of ZCT technique is to force the current of an 

outgoing device in PWM converters to zero prior to turning off the device. By using the ZCT 

technique, converters can achieve a higher switching frequency with reduced switching losses 

and less electro-magnetic-interference (EMI). 

Generally the ZCT commutation is realized through the oscillatory action of an LC circuit, 

which is triggered by an auxiliary switch. In power electronics building block (PEBB) phase-leg 

configuration, it is preferred to assist each main switch independently so that any PWM schemes 

for the hard-switching counterparts can be directly employed without modification and it is also 

easy to assemble more PEBB phase-legs in order to arrange several converter topologies. 

Using the same ZCT concept, a variety of circuit configurations and control schemes can result in 

different operational behaviors and soft-switching features. Fig. 1 shows one ZCT PEBB phase- 

leg, which consists of two main switches (SI and S2), two auxiliary switches (Six and S2x) and 

one LC resonant tank. Based on the same circuit configuration, a number of ZCT control schemes 

have been developed for modem gate-controlled devices, such as the IGBTs. These include the 

following: the ZCT scheme which achieves zero-current turn-off for the main switches [xx]; the 

improved scheme which also provides soft commutation for the main diodes and the auxiliary 

switches [xxi]; and the further improved scheme which achieves near-zero-voltage turn-on for the 

main switches [xxii]. The last introduced scheme (ZCT-NZVT) seems to the most promising one 

from the point of view of the resonant capacitor voltage stress, the auxiliary switch stress 

distribution, the peak value of both the current in the main switch and the current circulating in 

the auxiliary switch and also from the point of view of the circulating energy in the resonant tank 

[xxiii]. 
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Fig. 5-35 Soft switching PEBB schematic 

Further, two attributes can be identified in the circuit shown in Fig. 5-35. First, soft transitions for 

each phase-leg are executed independently. Hence, any PWM scheme developed for hard- 

switching converters is still applicable, and the ZCT implementation does not compromise any 

well-proven control techniques. Second, voltage stresses across all devices are kept to the level of 

dc bus voltage because no additional devices or components are inserted in the main power path. 

In the following the design steps for both ZCY-NZVT and IZCT techniques are resumed on 

the basis of the normalized approach. The normaUzation factors are the PEBB maximum dc link 

voltage Vdcm and the maximum current Ilm subjected to the ZCT turn-off; thus the normalized 

expressions are: 

y       7 Im 

•'in ~ hlhm ■        "den ~ ''dci'dcm ■ '^a dcm 

where ZO is the resonant tank impedance. 

Some design expressions are common to all the ZCT techniques, thus can be provided before the 

analysis of each technique: 

7i=2^VVQ (1) 

■^0 —■\l^x/^x (2) 

4 = Zo-To 
In 

Cx = 
4 

^xpkn = ^-/.„ 

T         — k 
^xpkoffn ~%# 4 

(3) 

(4) 

(5) 

(6) 

where Lx and Cx are the passive elements of the resonant tank, and Ixpkn and Ixpkoffn are the 

normalized values of respectively the peak resonant current and the peak resonant current during 

the main switch turning off. 
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5.3.8.1   ZCT-NZVTPEBB 

ZOlLLKn 

ZOnLcpkof&i 

Fig. 5-36 State-Plane Trajectory 

5.3.8.1.1  Design rule 

Determining ZOn 

From the state-plane trajectory it can be seen that 

\V   (t\ 
xpkoffn 

-'On 

where Vcxn is the normalized value of the resonant capacitor voltage. 

Assuming as first rough calculation that 

(7) 
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and knowing that 

we have 

Using (6) and (7) it is found 

V 1 7      _ 'den  , ^ 

-'in      ^^l^off (9) 

/t       >1 
It must be verified that °^ in order to achieve a total ZCT turn-off; thus at maximum dc Unk 

vohage Vdcm and maximum current Ihn condition ZCT turn-off is accomplished when 

Zo„<0.33 

As ZOn is selected, the value of koff, and then Ixpkoffn, can be found from (9) for every current 

and vohage operating condition. Also, the values of both resonant capacitor peak voltage 

(Vcxpkn) and resonant peak current (Ixpkn) can be found for each operating condition: 

V      =V    +7     I '^ cxpkn       "dcn^^On   "'in HQ) 

J _ ^exnV'O/ _ '^dcn       J 
xpkn rj y In 

^0« ^Or, . (11) 

Using (5), (9) and (11) the value of k is easily found 

^ = ^o#+l (12) 

The maximum normalized value of the peak current that flows through each power devices is 

respectively: 

hpkn ~ hn . ^Dpkn ~ ■'in ' U + ^J . ^SXpkn ~ ^ ' •'In . ^DXpkn ~ "'in 

From the state-plane trajectory it is possible to get a more accurate calculation of the Vcxn(t5) 

value. However, the resulting expression is more difficult to manage than (8). In the following is 

shown the detailed calculation: 

v.M=VcM-^v^Xu-x) 
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In the period " ■* ^ the Vdc voUage is included in the resonant path and as resuh the 

resonant current decreases rapidly toward zero; thus we can assume, with a good approximation, 

that the capacitor Cx is charged by means the current Ix linearly decreasing from II to zero. The 

following expressions can be written: 

^x "-'/    _ ^x '"cxV'\-i)  I  T/    .T.\f 

By rearranging the above written equations, the variation of the resonant capacitor normalized 

voltage level during the period At4-3 results: 

li 

Finally it is found an accurate expression for Vcxn(t5): 

5.3.8.1.2  Choosing TO 

From the state-plane trajectory, in case of Ilm and Vdcm, can be assumed 

TV =2VVC; •cos-'(l/A:„^) = §-cos-'(l/^,^) 

where the choice of Toff is device dependent, and it should be longer than the current fall time of 

the main switch. 

5.3.8.1.3  Calculation ofLx and Cx 
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The values of Lx and Cx can be determined by means of respectively (3) and (4) 

5.3.8.1.4  Timing of auxiliary switch gating signal 

Assuming that the main leg active components are SI and D2, the switch SIX is gated to achieve 

tuming-on of the main switch S1 whereas S2X provides the tuming-off of S1. 

The leading time of gating SIX with respect to S1 can be set as 

T      —   0 's,x - 2 1,     2kJ 

pw     =T 
The pulse width of SIX gate signal is       ■^'^      '^'^ in order to have SIX turn-off and SI turn- 

on at the same time. 

The leading time of gating S2X with respect to S1 turn-off signal can be chosen as 

T 
T     =-2--/ ^S2X .    ■'in 

whereas the pulse width of S2X gate is pointed out as 

In the previous expression 

AT=^.[v^.-vM] 

where 

AT   =t -t =C — 
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5.3.8.2   IZCTPEBB 

ZOiuDn 

ZOnxKit 

Fig. 5-37 State-Plane Trajectory 

5.3.8.2.1  Design rule 

Determining ZOn 

From the state-plane trajectory it can be seen that 

V   -IF (t \ j _ 'den      rcx»V5^ 
xpkoffn 

-'OB 

with 

In the period "^ "" 3 i t^e Vdc voltage is included in the resonant path and as result the 

resonant current decreases rapidly toward zero; thus we can assume, with a good approximation, 

that the capacitor Cx is charged by means the current Ix Hnearly decreasing from II to zero. The 

following expressions can be written: 

^.(^3) 
_I,M 

~ 2C 

2 2 dc     ! ^ 

By rearranging the above written equations, the resonant capacitor normalized voltage level at t3 

results: 
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From the previous equations it is found that: 

K      —A—J£S-—   \      '    den     I 1 

^On   -'in        V ^On   "'in 

and in a more promptly form 

^<,#=3-^,,-V4-4+l 

where 

7   •/ ^On   •'in 

is the ratio between Ixpkoffn and Iln when Vcxn(t5)=0. 

k    >1 
The value of ZOn is determined by means of (16) and (17) in order to achieve    °^      , thus 

providing a total ZCT turn-off 

As ZOn is selected, the value of koff, and then Ixpkoffn, can be found from (16) for every current 

and voltage operating condition. Also, the values of the resonant capacitor peak voltage (Vcxpkn) 

can be found for each operating condition: 

V      =V   +7     T ' cxpkn       ' den ^ ^On   ^ xpkoffn 

which, rearranged leads to the expression 

''^expkn ~ ^ ' *^den      V^ " '^dcn + ■^Qn ' -'in 

The maximum normalized value of the peak current that flows through each power devices is 

respectively: 

hpkn - -^In ■ U + ^<#/.        ^Dpkr, = ^ • /[„ ^SXpkn = '^off ' -'in . ^DXpkn - Kff ' ■'in 

5.3.8.2.2  Choosing TO 

From the state-plane trajectory, in case of Ilm and Vdcm, can be assumed 
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Toff = 2VVC:-cos-'(l/*„^)=^-cos-'(l/^„^) 

where the choice of Toff is device dependent, and it should be longer than the current fall time of 

the main switch. 

5.3.8.2.3 Calculation ofLx and Cx 

The values of Lx and Cx can be determined by means of respectively (3) and (4) 

5.3.8.2.4 Timing of auxiliary switch gating signal 

Assuming that the main leg active components are SI and D2, the switch SIX is gated to achieve 

both tuming-on and tuming-off of the main switch SI. 

The leading time of gating S1X with respect to S1 can be set as 

T 
T       —   0 

where koffm is the value that koff assumes when Vdc=Vdcm and Il=Ilm. 

PW       =T 
The pulse width of SIX gate on-signal is       ■s'^""      ■^'^''" in order to have SIX turn-off and SI 

turn-on at the same time. 

The leading time of gating SIX with respect to S1 turn-off signal can be chosen as 

T        =7" ^SlXoff       ^SlXon 

whereas the pulse width of SIX gate off-signal is pointed out as 

PW        =T 
^'"SlXoff      ^SlXoff 

5.3.8.3   Numerical Example of Resonant Circuit Design for a lOOkW PEBB Phase- 

Leg 

Vdcm=800V; 
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Ilm=191A (pk value at switching frequency, assuming as current ripple 25% of the rated phase 

current). 

ZCT-NZVT 

Z0n=0.31, Z0=1.3Q 

Lx=0.725uH; Cx=0.43uF 

Toff=800ns, T0=3.5ns 

At rated operating condition: 

kof^l.225, k=2.225, 

Ixpkofif=234A, Ixpk=425A, 

ISpk=191A IDpk=616A 

Timing: 

Vcxpk=1048V, 

ISXpk=425A IDXpk=191A 

P^six = Tsix = 2.143M5 Ts2x = 0.875M5 PWs2^=3Jl4us 

Atnn=3/4(143.25A) 

koff=2.3, k=3.3, 

Ixpkoff=329.5A, Ixpk=472.7A, Vcxpk=986V, 

ISpk=143.25A IDpk=616A ISXpk=472.7A IDXpk=143.25A 

Timing: 

PWs,x=T,,^=2m5us Ts2X = 0.875M5 PW,,^=Aus 

Atnn=l/2(95.5A) 

koffM.45, 

Ixpkoff=425A, 

ISpk=95.5A 

Timing: 

k=5.45, 

Ixpk=529.5A, 

IDpk=616A 

Vcxpk=924V, 

ISXpk=529.5A IDXpk=95.5A 

PWs,x=Ts^x='^-^^^s Tsix = O.SlSus PWs2x = 4.36M5 

Atnn=l/4(47.75A) 

koff=10.9, 

Ixpkoff=520.5A, 

ISpk=47.75A 

Timing: 

k=11.9, 

Ixpk=568.2A, Vcxpk=862V, 

IDpk=616A ISXpk=568.2A IDXpk=47.75A 
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> > 

Atlln=5/4(238.75A) 

koflN(0.58) 1, k=1.58, 

Ixpkoff=238.75A Ixpk=377.2A, Vcxpk=1110V, 

ISpk=238.75A IDpk=616A ISXpk=377.2A IDXpk=238.75A 

Timing: 

^^six = Tiix = 2.304M5 Ts2x=0.S75us PRP^^JA-= 3-25M5 

IZCT 

Z0n=0.715, Z0=3n 

Lx=1.672uH; Cx=0.186uF 

TofiN800ns, T0=3.5ns 

At rated operating condition: 

koff=1.225, kid=1.4, 

Ixpkoff=234A, Vcxpk=1501V, 

ISpk=425A IDpk=382A ISXpk=234A IDXpk=234A 

Timing: 

P^SlXon - '^SlXon ~ ^"SXXoff ~ ^SXXoff ~ 2.025US 

At Iln=3/4 (143.25A) 

koff^l.733, kid=1.865, 

Ixpkoff=248.25A, Vcxpk=l 543.5V, 

ISpk=391.5A IDpk=286.5A ISXpk=248.25A 
IDXpk=248.25A 

Timing: 

PWs^Xon = Tsxxon = PWsxXoff = TsxXoff = 2.678t/5 

At nn=l/2 (95.5A) 

koff=2.71, kid=2.8, 

Ixpkoff=258.8A, Vcxpk=1575V, 

ISpk=354.3A IDpk=191A ISXpk=258.8A IDXpk=258.8A 
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Timing: 

^^5.xo« = Ts,xo. = PWs^xoff = Ts^xoff = 2.718W5 

Atlln=l/4(47.75A) 

koff^5.55, 

Ixpkoff=265A, 

ISpk=312.7A 

Timing: 

kid=5.6, 

Vcxpk=1593.6V, 

IDpk=85A ISXpk=265A IDXpk=265A 

P^SiXon - '^SlXon " P^S\Xoff - ^^SXXoff " 2.741M5 

At nn=5/4 (238.75A) 

koff=(0.906) 1 

Ixpkoff=238.75 

ISpk=404.7A 

Timing: 

kid=1.119, 

Vcxpk=1515V, 

IDpk=477.5 ISXpk=238.75 IDXpk=238.75 

P^SXXon - ^SlXon — ''"SXXojf ~ ^SXXoff 2.643M5 

Table 5-6 Theoretical calculation results and simulation results (between parenthesis) 

ZCT-NZVT IZCT 

Main 
current [A] 

Main 
switch 

current [A] 

Main diode 
current [A] 

Auxiliary 
switch 

current [A] 

Auxiliary 
diode 

current [A] 

Main 
switch 

current [A] 

Main diode 
current [A] 

Auxiliary 
switch 

current [A] 

Auxiliary 
diode 

current [A] 

191 191 

(191) 

616 

(621) 

. 425 

(430) 

191 

(191) 

425 

(414) 

382 

(360) 

234 

(223) 

234 

(197) 

143.25 143.25 

(143.25) 

616 

(602) 

472.7 

(458) 

143.25 

(143.25) 

391.5 

(370) 

286.5 

(270) 

248.25 

(227) 

248.25 

(200) 

95.5 95.5 

(95.5) 

616 

(582) 

529.5 

(486) 

95.5 

(95.5) 

354.3 

(329) 

191 

(179) 

258.8 

(233) 

258.8 

(206) 

47.25 47.25 

(47.25) 

616 

(564) 

568.2 

(516) 

47.25 

(47.25) 

312.7 

(292) 

95.5 

(89) 

265 

(244) 

265 

(216) 

238.75 238.75 

(238.75) 

616 

(642) 

377.2 

(403) 

238.75 

(238.25) 

477.5 

(442) 

477.5 

(450) 

238.75 

(211) 

238.75 

(238.75) 
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5.3.8.4   Numerical and Simulation Results (Pspice PEBB phase leg models) 

5.3.8.4.1 ZCT-NZVT (rated conditions of operation) 

Resonant inductor current and resonant capacitor voltage 

i   ? 

Fig. 5-38 Main leg currents 
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S i 

Fig. 5-39 Auxiliary leg currents 
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Fig. 5-40 IZCT (rated conditions of operation) 
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5.3.8.4.2 Resonant inductor current and resonant capacitor voltage 

Fig. 5-41 Main leg currents 
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Fig. 5-42 Auxiliary leg currents 
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sg 

Fig. 5-43 ZCT-NZVT (rated conditions of operation) 

5.3.8.5   Comparison Between the ZCT-NZVT and the IZCT Techniques 

On the basis of the normalized approach, IZCT and ZCT-NZVT resonant circuit designs can 

be compared. 
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Resonant capacitance value: 

lower in IZCT topology than in ZCT-NZVT one, thus the total resonant capacitance can be 
mainly affected by parasitic elements in IZCT scheme. 

Resonant capacitor peak voltage level: 

close to 2 times the dc link voltage for IZCT technique, 1.3-1.4 times the dc link voltage for ZCT- 
NZVT technique. 

Resonant inductance value: 

lower in ZCT-NZVT topology than in IZCT one, thus the total resonant inductance can be mainly 
affected by parasitic elements in ZCT-NZVT scheme. 

Resonant inductor peak current level: 

2.3-2.4 times the maximum current subjected to ZCT turn-off for ZCT-NZVT technique, 1.3-1.4 
times the maximum current subjected to ZCT for IZCT topology. 

Main switch peak current: 

2.3-2.4 times the maximum current subjected to ZCT turn-off for IZCT scheme, equal to the 
maximum current subjected to ZCT for ZCT-NZVT configuration. 

Main diode peak current: 

3.3-3.4 times the maximum current subjected to ZCT turn-off for ZCT-NZVT technique, 2 times 
the maximum current subjected to ZCT for IZCT topology. 

Auxiliary switch peak current: 

2.3-2.4 times the maximum current subjected to ZCT turn-off for ZCT-NZVT technique, 1.3-1.4 
times the maximum current subjected to ZCT for IZCT topology 

Auxiliary diode peak current: 

1.3-1.4 times the maximum current subjected to ZCT turn-off for IZCT scheme, equal to the 
maximum current subjected to ZCT for ZCT-NZVT configuration. 

Timing of the auxiliary switch gate signals: 

very easy for the IZCT technique, more complicated in ZCT-NZVT technique. 

Behavior at main current lower than the maximum current subjected to ZCT turn-off: 
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tum-off hard switching of the auxiliary switch in ZCT-NZVT scheme at 25% of the maximum 

current subjected to ZCT tum-off, regular even at 25% of the maximum current subjected to ZCT 

tum-off for IZCT configuration. 

Behavior at main current higher than the maximum current subjected to ZCT tum-off: 

partial tum-off hard switching of the main switch in ZCT-NZVT scheme at 125% of the 

maximum current subjected to ZCT tum-off, partial tum-off hard switching of the main switch in 

IZCT scheme at 125% of the maximum current subjected to ZCT tum-off (however, the hard 

switched current is lower than in ZCT-NZVT case). 

5.3.8.6   Design of the Resonant Circuit 

5.3.8.6.1  Resonant Inductor Design 

Design input parameters: 

inductance value Lx; 

rated peak current (Ixpk) and rated rms current (Ixrms); 

operating frequency (fD); 

In order to carry on the design of the resonant inductor the following expressions are considered: 

l^e-'^e-'e- 2 
Bpk 

L = MoM-A^-N^ 

^u) —~ 
^x ' ^ xpk ' ^xrms 

Ir    . T        . A   . R 
'^cu   "^xrms   -^e   " pk 

where Ve, Ae, le and |xO|J, are respectively the volume, the cross section, the path length and the 

magnetic permeability of the material in which the magnetic energy is stored; Bpk is the peak 

flux density in the core; Aw, N, kcu and Jxrms are respectively the required winding area, the 
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number of turns, the fill factor and the current density considered for the inductor winding; from 

simulation resuhs Ixrms is equal to 16.1k and 53.3A respectively for ZCT-NZVT and IZCT soft- 

switching techniques. 

The core material is chosen on the basis of the operating frequency; thus, the value of Bpk and 

the magnetic permeability are found from data-sheet of the selected material. 

The core size closest to the previous result is chosen among the options available on the market; 

then, by using the previous expressions the actual values of Bpk, N, Lx and Aw are known. 

Molypermalloy powder (MPP) core, high flux powder (HFP) core, Metglas core and ferrite core 

have been investigated for the resonant inductor of the proposed soft-switching techniques; in 

each design the copper fill factor and the winding current density have been considered equal 

respectively to 0.6 and 6A/mm2. 

MPP Core Inductor (Magnetics Inc.) [5] 

5.3.8.6.1.1    ZCT-NZVT technique 
Physical Characteristics Results   from 

(23) 
(20) through 

Part 
Num. 

N.of 
Pcs. 

Ext. Dim. 
(wxhxl mm3) 

lA Ae 
(cm2) 

le (cm) Bpk 
(T) 

Lx N Aw 
(cm2) 

55190- 
A2 

3 57.2x57.2x45.6 14 6.87 12.5 0.179 0.87 3 0.64 

55902- 
A2 

2 77.8x77.8x31.8 14 4.54 19.95 0.15 0.64 4 0.85 

55441- 
A2 

4 46.7x46.7x72 14 7.96 10.74 0.139 0.521 2 0.43 

From material data-sheet the core losses can be roughly calculated: 

expected core losses:     120mW (for all the three options) 

203 



5.3.8.6.1.2 

5.3.8.6.1.- 5   IZCT technique 
Physical Characteristics Results from (20) through 

(23) 

Part 
Num. 

N.of 
Pcs. 

Ext. Dim. 
(wxhxl mm3) 

H Ae 
(cm2) 

le (cm) Bpk 
(T) 

Lx 
(HH) 

N Aw 
(cm2) 

55869- 
A2 

2 77.8x77.8x25.4 14 3.54 20.0 0.145 1.525 7 1.02 

55190- 
A2 

2 57.2x57.2x30.4 14 4.58 12.5 0.165 1.611 5 0.75 

55441- 
A2 

3 46.7x46.7x54 14 5.97 10.74 0.153 1.564 4 0.59 

Expected core losses:    lOOmW (for all the three options) 

HFP Core Inductor (Magnetics Inc.) 

5.3.8.6.1.4   ZCT-NZVT technique 
Physical Characteristics Resuhs from (20) through (23) 

Part 
Num. 

N.of 
Pcs. 

Ext. Dim. 
(wxhxl mm3) 

JA Ae 
(cm2) 

le (cm) Bpk 
(T) 

Lx 
(^H) 

N Aw (cm2) 

58933- 
A2 

2 26.9x26.9x22.4 14 1.308 6.35 0.47 0.58 4 0.85 

58257- 
A2 

1 39.9x39.9x14.5 14 1.072 9.84 0.46 0.69 6 1.28 

Expected core losses:     lOOW (for all the two options) 
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5.3,8.6.1.5   IZCT technique 
Physical Characteristics Results   from 

(23) 
(20) through 

Part 
Num. 

N of 
Pcs. 

Ext. Dim. 
(wxhxl mm3) 

[i- Ae 
(cm2) 

le 
(cm) 

Bpk 
(T) 

Lx N Aw 
(cm2) 

58327- 
A2 

1 35.8x35.8x10.5 14 0.678 8.98 0.504 1.606 11 1.63 

58256- 
A2 

1 39.9x39.9x14.5 26 1.072 9.84 0.545 1.743 7 1.03 

Expected core losses:    lOOW (for the first core); 175W (for the second core) 

Metglas Core Inductor (Magnetics Inc.) 

5.3.8.6.1.6   ZCT-NZVT technique 
Physical Characteristics Resuhs from (20) through (23) 

Part Num. N.of 
Pcs. 

Ext. Dim. 
(wxhxl mm3) 

V^ Ae 
.(cm?) 

le 
(cm) 

Bpk 
(T) 

Lx 
(HH) 

N Aw 
(cm2) 

MC0012 1 34.95x50.8x12.7 1 1.06 0.17 0.95 0.725 3 0.64 

Expected core losses:    72.5 W 
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5.3.8.6.1.7   IZCT technique 
Physical Characteristics Results from (20) through (23) 

Part 
Num. 

N.of 
Couple 

s 

Ext. Dim. 
(wxhxl mm3) 

^ Ae 
(cm?) 

le 
(cm) 

Bpk 
(T) 

Lx 
(MH) 

N Aw 
(cm2) 

MC0009 1 28.58x49.3x12.7 1 0.907 0.17 0.864 1.672 5 0.75 

Expected core losses:    47.5W 

Ferrite Core Inductor (Magnetics Inc.) [9] 

5.3.8.6.1.8    ZCT-NZVT technique 
Physical Characteristics Results from (20) through (23) 

Part 
Num. 

N.of 
Couples 

Ext. Dim. 
(wxhxl mm3) 

n Ae 
(cm2) 

le 
(cm) 

Bpk 
(T) 

Lx 
(MH) 

N Aw 
(cm2) 

P45528- 
EC 

2 54.9x55.2x41.2 1   • 7.0 0.48 0.221 0.725 2 0.43 

P44924- 
EC 

2 49.1x47.6x31.3 1 5.14 0.36 0.3 0.725 2 0.43 

P45530- 
EC 

1 54.9x55.2x24.6 1 4.17 0.65 0.246 0.725 3 0.64 

Expected core losses :     15W(forthel irst opi don); 10\ V (for bo th the secc )nd and th e third core) 

5.3.8.6.1.9 

5.3.8.6.1.10 

5.3.8.6.1.11 IZCT technique 
Physical Characteristics Results from (20) through (23) 

Part 
Num. 

N.of 
Couples 

Ext. Dim. 
(wxhxl mm3) 

M Ae 
(cm2) 

le 
(cm) 

Bpk 
(T) 

Lx 
(MH) 

N Aw 
(cm2) 

P45530- 
EC 

1 54.9x55.2x24.6 1 4.17 0.5 0.235 1.672 4 0.85 

Expected core losses:    lOW 
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5.3.8.6.2 A simple circuit for inductor experimental testing 

The following circuital configuration can be adopted to test the inductance value of the assembled 

inductors. 

A dc current generator supplies the inductor L under testing in series with a resistor R having 

resistance value very high if compared to the inductor resistance. At time t=0 the switch S is 

closed, by monitoring the current flowing through the resistor and the voltage across the resistor it 

is possible to achieve the indirect measurement of the inductance. In fact, 

L = 0 

where 

(Z> = [F^ • dt 

can be easily known by using modem scopes. 

5.3.8.7   Resonant Capacitor Selection (Electronic Concepts Inc.) 

5.3.8.7.1 ZCT-NZVT Technique 

5PT46L104      O.ll^F, 1200V 4Pcs.   or 

PT88BN224     0.22M,F, 1200V 2 Pcs.   or 

PT88BN394     0.39^F, 1200V 1 Pc. 

5.3.8.7.2 IZCTTechnique 

5PT46M104 + 5PT46M823       0.1nF+0.082^F, 1500V 1+1 Pcs. 

MT88BT184    0.18|xF, 1600V 1 Pc. 
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5.3.9 Experimental Verification of Soft Switched PEBBs 

The old phase-legs developed in the previous project were upgraded to accommodate for soft 

switching commutation. The resuhant phase leg structure is shown in Fig. 5-44, clearly depicting 

both main and auxiliary switches, as well as the L-C series resonant tank. Fig. 5-45 shows actual 

pictures taken from one of the upgraded PEBBs, clearly showing its main components, including 

the current sensor. Fig. 5-46 shows the experimental setup used to test both studied algorithms, 

and Fig. 5-47 and Fig. 5-48 show experimental results obtained. Particularly Fig. 5-47 shows the 

on off transitions for the I-ZCT techniques and Fig. 5-48 the on off transitions for the ZV-ZCT 

technique. The main result attained was the reduction of the commutation losses, which naturally 

increases the efficiency of the PEBB and allows for high frequency operation without increasing 

the thermal requirements of the converter system. 

Fig. 5-44 Soft switching PEBB schematic built from old phase-leg by adding 
auxiliary resonant circuit. 
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Fig. 5-45 Downwards and lateral views of Softswitching PEBB. 
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Fig.   5-46   Experimental   setup   used   to   test   appropriate   operation   of  the 
softswitching PEBBs. 
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Fig. 5-47 Turn on and turn off transients for IZCT softswitching algoritlim. 
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Fig. 5-48 Turn on and turn off transients for ZV-ZCT softswitching algorithm. 

shows the cabinet we used to run the test. Fig. 5-50 illustrates how a soft-switched PEBB can 

be plugged into the cabinet. The circuit diagram of the DC-DC test is shown in Fig. 5-51. All the 

tests run at: 
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Fig. 5-49 PnP compliant cabinet. 
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(a) PEBB slots on cabinet. (b) A soft-switched PEBB on the rail 
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(c) A soft-switched PEBB plugged into the cabinet. 

Fig. 5-50 Test soft-switched PEBB on the cabinet. 
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Fig. 5-51 Circuit diagram of DC-DC test for soft-switched PEBB. 

We run the DC-DC test by generating constant duty cycle from the integrated hardware on 

the soft-switched PEBB to verify whether the PEBB is able to work with cabinet properly. Fig. 
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5-52 shows the experimental waveform of this test. Cl is the input voltage; C2 is the voUage 

across the bottom main switch; Ml is the output inductor current. 
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Fig. 5-52 DC-DC test waveforms of soft-switched PEBB, witli hardware manager 

generating constant duty cycle. 

We also did a similar DC-DC test with the PWM control information sent from the UC to the 

hardware manager through PESNet. Fig. 6 6 shows the experimental waveforms with the constant 

duty cycle (=0.4) received from the UC; while Fig. 6 7 shows the waveforms resulted from the 

duty cycle change to 0.8 at the UC. 
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Fig. 5-53 DC-DC test waveforms of soft-switched PEBB, witli a constant duty cycle 
(0.4) sent from UC. 
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Fig. 5-54 DC-DC test waveforms of soft-switched PEBB, with a constant duty cycle 
(0.8) sent from UC. 
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Fig. 5-55 Experimental set-up schematic for testing tlie new PEBB modules 
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5.4 Experimental Validation of New PEBB Modules 

In order to verify the proper operation of power stage and new PEBB modules, tests were run 

up to a DC link voltage of 200V. Particularly, the new PEBB was connected to operate in a buck 

DC/DC converter mode with the bottom switch disabled all the time, and the top switch switching 

at 20 kHz. 

5.4.1 Buck dc-dc operation 

The configuration used for the test is the same as that shown in Fig. 5-55. The variables 

measured were Vdc, VTopSw, Idc, and Vload. The current was set at 5 A/lOmV and was 

measured using a Tektronix Hall-Effect gun. All voltage measurements were made using 

Tektronix high vohage differential probes. 

C hannel Description Scale Notes 

1 VTopSwitch 200V/div 

2 VDC 200V/div 

3 Idc 5A/div (Idiv = lOmV), Choke on BNC cable 

4 Vload lOOV/div 
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Fig. 5-56 New PEBB operating in Buck dc-dc converter mode. 

An expanded view of the switch turn off is shown below. 

Channel Description Scale Notes 

1 VTopSwitch 200V/div 

2 VDC 200V/div 

3 Idc 5A/div (Idiv = lOmV), Choke on BNC cable 

4 Vload lOOV/div 
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Fig. 5-57 Turn off transient of new PEBB operating in Buck dc-dc converter mode. 

5.4.2 Pulse Test Results 

A two-pulse test was performed in order to show the phase leg could safely switch at high 

power and EMI levels. The output of Phase C was shorted to the negative DC rail, making the 

load of Phase C to be the 216uH inductor. The schematic shown in Fig. 5-58 was created using 

the cabinet and the new phase leg. This test consists of two pulses as shown in Fig. 5-59. The 

first pulse is large, with the intention of building the current up to the test level. The second pulse 

is a typical PWM pulse. This pulse is repeated once per second, which makes the power very 

small while testing large currents. The measured waveform is shown in Fig. 5-60. 
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Fig. 5-58 Pulse test schematic using a new PEBB module for ElVII verification 
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Fig. 5-59 Pulse test applied for ElVII verification. 
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Channel           Description                      Scale                 Notes 

1 VTopSwitch 200V/div Zero when switch is on 
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4 Iload 50A/div (Idiv = lOmV), Choke on BNC cable 
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Fig. 5-60 Experimental results showing that the current returns to zero after 12ms. 

The current peak can be calculated for turn on: 

VT    150 100// 

L 216// 
= 69.4^ 

For turn off, the current peak is: 

L 216// 
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A pulse testing interface was written in VHDL to create a waveform similar to that shown in 

Fig. 5-60 channel 1. This was used in place of the PWM generator, and the values were 

controlled from the fiber optic interface. A series diode was added to prevent the negative current 

from flowing back into the power supply. The diode can be seen blocking the negative current in 

Fig. 5-61. 

Channel Description Scale Notes 

1 VTopSwitch 200V/div 
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3 Idc -50A/div (Idiv = lOmV), Choke on BNC cable 

4 Iload 50A/div (Idiv = lOmV), Choke on BNC cable 
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Fig. 5-61 Experimental test with series diode in dc path to avoid negative currents in 
the power supply. 
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Channel Description Scale Notes 
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Fig. 5-62 Expanded view of transient in Fig. 5-61. 

The following waveforms in Fig. 5-63 show that a peak power of 22.5 kW was achieved at 

150A and 150V. 

223 



Channel Description Scale Notes 

1 VTopSwitch 200V/div 

2 VDiode lOV/div 

3 Idc -50A/div (Idiv = lOmV), Choke on BNC cable 

4 noad 50A/div (Idiv = lOmV), Choke on BNC cable 

leK Kun : SOOkS/s       Sample 
[ ; T- 

3-» 

■w™'~'^^rTinAT^i^W^|i T1" ^ '^'Vi^ 

,t...^"-.:-S!^^-,^S-tt^-V:KWS-S-S;-.,-V:^,';5i^i- 

■ ,vi.,HiV¥'Wji^**f'#*W'W' 

cFn100V 
Ch3   lO.OmVQ 

^■^ ■U^iliBMBiwiu  wmipi^mi^iinH irtiiiil ifti  '^■^■■ii i 

mu 

*^|^l^i4^)^^fm^,!^^ 

Cha 
10,0 V 

ICOrriVQ 
M  200jas   Chi -v 

Cl Freq 
4.38718kHz 
Low signal 
amplitude 

Cl +Duty 
10.4% 

Low signal 
amplitude 

Cl High 
162 V 

C4 Freq 
™ Hz 

No period 
foiincl 

40 V   30Jul 2003 
17:42:33 

Fig. 5-63 High frequency oscillations observed 

5.4.3 Impedance measurements 

As shown in the previous results extrinsic oscillations were observed at the commutation 

instant. In order to study and characterize this phenomenon then impedance measurements using 

an analyzer were performed. Specifically, the DC impedance, ZDC, was measured using an 

Agilent 4294A impedance analyzer with the 42941A impedance probe attachment. This is the 

impedance from the DC positive bus contactor to the DC negative bus contactor. The new phase 
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leg was plugged into slot A having the contactors are open as shown in Fig. 5-64. Fig. 5-65 shows 

the results obtained. The switching filter can be seen with the peak at 5 kHz, but for high 

fi-equencies, the inductance will prevent the filter fi-om working as intended. 
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Fig. 5-64 DC Impedance measurement schematic 
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Fig. 5-65 DC Impedance test on the cabinet. 

The impedance of the load plus the filter was also characterized, which corresponds to 

impedance seen by the PEBB module as shown in Fig. 5-66. These results are shown in Fig. 5-67. 
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Fig. 5-66 Load impedance measurement setup. 
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Fig. 5-67 Load impedance measurement results. 

5.5 Conclusion 

The design of PEBB-based power electronics systems is not only an electrical system design 

procedure, but has transformed into a multivariable optimization scenario. Physical distributions 

and structural functionality now play a key role in determining the electrical behavior of the final 

structure. These basically set parasitic parameters, efficiency, size, volume, reconfiguration 

capabilities, as well as overall functionality in terms of the PEBB-based power conversion 

system. Fundamental research in electromagnetic and physical characteristics of such a 

distributed structure converter is hence required. With an effort on this area good design criteria 

will be established in conformity with the concepts involved with this novel approach. 
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6 CONCLUSIONS 

This work has investigated an open system design approach for developing Plug and Play 

PEBB-based power electronics systems. The main objective was to investigate standardized 

control and communications systems and architectures. The research effort was primarily focused 

on three distinctive thrusts, namely development of a Universal Controller, development of 

dataflow-based architecture software for distributed control systems, and development of a 

Hardware or Power Stage Manager. The main results are summarized as follows. 

A Universal Controller board was fully designed, manufactured, and experunentally tested 

and evaluated. The controller proved its enhanced and powerful computational capabilities 

attained by its DSP-FPGA based digital system architecture. It also presented an unparalleled 

flexibility, achieved by the inclusion of JTAG connectors for both DSP and FPGA, of 88 I/O pins 

connected directly to the FPGA, and its PCI interface. All these provide an outstanding visibility 

into the controller digital system, greatly simplifying any type of design or evaluations. The board 

was experimentally verified in all its capabilities by communicating through the upgraded 

PESNet protocol with similar Universal Controllers, with the new Hardware Manager - 

performing PWM control over the new PEBB modules-, and also effectively communicating with 

the previously developed PEBBs upgraded to soft switching capacity. The results obtained have 

been extremely encouraging, showing a great operational reliability and a significant 

simplification of the design process. Future results are expected as part of the new project 

Standard Cell, Open Architecture Power Conversion Systems. 

Regarding control software architecture, this project continued with CPES work on 

embedded control systems proposing a power electronics control software built over standardized 

ECO. A second version of the control system kernel DARK was finalized and successfully tested 

through thorough analyses and computer evaluations. In order to study any possible effects of the 

programming language in the performance of the kernel and hence control system DARK was 

also implemented using C++, which in general provided a better and more structured way of 

extending data chaimels. The PESNet protocol for communications was upgraded and modified 

adding significant new capabihties, thus increasing the overall reliability of PEBB-based power 

electronics systems. This protocol was further improved by developing transparent messaging 

between Universal Controllers across the double-ring fiber optic network. Finally, commercial 

software platforms for developing embedded control systems were also studied and compared to 
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the proposed dataflow architecture system, where the latter presented more flexible real-time 

control options, eased the design of distributed control systems, and required significant less 

redesign efforts. The main disadvantage still remains the lack of a graphical development 

environment. 

On the development of the Hardware Manager, or power stage controller, excellent and 

encouraging results were attained. In a much shorter design, manufacture, and verification 

process than the Universal Controller, the Hardware Manager proved its outstanding 

performance, reliability, and simpUcity. Numerous tests actually showed the good performance 

and operation of the board when communicating through the optic-fiber network with the 

Universal Controller, and when controlling the new PEBB modules for which it was designed. 

Electrical and thermal variable readings have been effectively measured and used as part of the 

control and protection system of the new PEBBs. The success of this board is a direct 

consequence of all the previous experience gained through the Universal Controller. 

Finally, as part of the validation process for the proposed PnP PEBB-based power electronics 

system a partitioning study was performed to determine the feasible physical, energy, and 

information boundaries proper to such systems and PEBBs in particular. Correspondingly a 

PEBB-compliant power stage was designed and built. Previously built 33 kW PEBB modules 

were upgraded to accommodate for soft switching capability, and new 33 kW PEBB modules 

using the newly developed Hardware Manager were designed and manufactured. Individual tests 

with PEBB modules were realized in order to verify their correct operation, both for soft switched 

and the newly developed ones. Communications tests were also successfiiUy performed between 

the old and new PEBB modules and the Universal Controller, which effectively controlled these 

boards. Full verification of the PEBB modules, specifically on the new ones, is still under way in 

order to ensure their correct operation not only in terms of their fiinctionality but also regarding 

potential problems such as isolation, thermal, and EMI. Full validation of the different topologies 

that may be realized with the proposed PnP PEBB-based power electronics systems will be 

realized as part of the new project Standard Cell, Open Architecture Power Conversion Systems. 
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